Patents by Inventor George Samachisa

George Samachisa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050201154
    Abstract: An integrated non-volatile memory circuit is formed by first growing a thin dielectric layer on a semiconductor substrate surface, followed by depositing a layer of conductive material such as doped polysilicon on this dielectric layer, the conductive material then being separated into rows and columns of individual floating gates. Cell source and drain diffusions in the substrate are continuously-elongated across the rows. Field dielectric deposited between the rows of floating gates provides electrical isolation between the rows. Shallow trenches may be included between rows without interrupting the conductivity of the diffusions along their lengths. A deep dielectric filled trench is formed in the substrate between the array and peripheral circuits as electrical isolation. Various techniques are included that increase the field coupling area between the floating gates and a control gate.
    Type: Application
    Filed: April 20, 2005
    Publication date: September 15, 2005
    Inventors: Jack Yuan, Eliyahou Harari, Yupin Fong, George Samachisa
  • Patent number: 6936887
    Abstract: Several embodiments of flash EEPROM split-channel cell arrays are described that position the channels of cell select transistors along sidewalls of trenches in the substrate, thereby reducing the cell area. Select transistor gates are formed as part of the word lines and extend downward into the trenches with capacitive coupling between the trench sidewall channel portion and the select gate. In one embodiment, trenches are formed between every other floating gate along a row, the two trench sidewalls providing the select transistor channels for adjacent cells, and a common source/drain diffusion is positioned at the bottom of the trench. A third gate provides either erase or steering capabilities. In another embodiment, trenches are formed between every floating gate along a row, a source/drain diffusion extending along the bottom of the trench and upwards along one side with the opposite side of the trench being the select transistor channel for a cell.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: August 30, 2005
    Assignee: SanDisk Corporation
    Inventors: Eliyahou Harari, Jack H. Yuan, George Samachisa, Henry Chien
  • Publication number: 20050180210
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them. In another form, NAND arrays of strings of memory cells store charge in regions of a dielectric layer sandwiched between word lines and the semiconductor substrate.
    Type: Application
    Filed: March 7, 2005
    Publication date: August 18, 2005
    Inventors: Eliyahou Harari, George Samachisa, Jack Yuan, Daniel Guterman
  • Patent number: 6925007
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them. In another form, NAND arrays of strings of memory cells store charge in regions of a dielectric layer sandwiched between word lines and the semiconductor substrate.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: August 2, 2005
    Assignee: SanDisk Corporation
    Inventors: Eliyahou Harari, George Samachisa, Jack H. Yuan, Daniel C. Guterman
  • Publication number: 20050157551
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them. In another form, NAND arrays of strings of memory cells store charge in regions of a dielectric layer sandwiched between word lines and the semiconductor substrate.
    Type: Application
    Filed: March 7, 2005
    Publication date: July 21, 2005
    Inventors: Eliyahou Harari, George Samachisa, Jack Yuan, Daniel Guterman
  • Publication number: 20050146933
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Application
    Filed: February 8, 2005
    Publication date: July 7, 2005
    Inventors: Daniel Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker Quader
  • Patent number: 6897522
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: May 24, 2005
    Assignee: SanDisk Corporation
    Inventors: Eliyahou Harari, George Samachisa, Jack H. Yuan, Daniel C. Guterman
  • Patent number: 6894343
    Abstract: Several embodiments of flash EEPROM split-channel cell arrays are described that position the channels of cell select transistors along sidewalls of trenches in the substrate, thereby reducing the cell area. Select transistor gates are formed as part of the word lines and extend downward into the trenches with capacitive coupling between the trench sidewall channel portion and the select gate. In one embodiment, trenches are formed between every other floating gate along a row, the two trench sidewalls providing the select transistor channels for adjacent cells, and a common source/drain diffusion being positioned at the bottom of the trench. A third gate provides either erase or steering capabilities. In another embodiment, trenches are formed between every floating gate along a row, a source/drain diffusion extending along the bottom of the trench and upwards along one side with the opposite side of the trench being the select transistor channel for a cell.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: May 17, 2005
    Assignee: SanDisk Corporation
    Inventors: Eliyahou Harari, Jack H. Yuan, George Samachisa
  • Patent number: 6888752
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: May 3, 2005
    Assignee: SanDisk Corporation
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker N. Quader
  • Publication number: 20040212006
    Abstract: Several embodiments of flash EEPROM split-channel cell arrays are described that position the channels of cell select transistors along sidewalls of trenches in the substrate, thereby reducing the cell area. Select transistor gates are formed as part of the word lines and extend downward into the trenches with capacitive coupling between the trench sidewall channel portion and the select gate. In one embodiment, trenches are formed between every other floating gate along a row, the two trench sidewalls providing the select transistor channels for adjacent cells, and a common source/drain diffusion is positioned at the bottom of the trench. A third gate provides either erase or steering capabilities. In another embodiment, trenches are formed between every floating gate along a row, a source/drain diffusion extending along the bottom of the trench and upwards along one side with the opposite side of the trench being the select transistor channel for a cell.
    Type: Application
    Filed: May 17, 2004
    Publication date: October 28, 2004
    Inventors: Eliyahou Harari, Jack H. Yuan, George Samachisa, Henry Chien
  • Publication number: 20040175888
    Abstract: An integrated non-volatile memory circuit is formed by first growing a thin dielectric layer on a semiconductor substrate surface, followed by depositing a layer of conductive material such as doped polysilicon on this dielectric layer, the conductive material then being separated into rows and columns of individual floating gates. Cell source and drain diffusions in the substrate are continuously elongated across the rows. Field dielectric deposited between the rows of floating gates provides electrical isolation between the rows. Shallow trenches may be included between rows without interrupting the conductivity of the diffusions along their lengths. A deep dielectric filled trench is formed in the substrate between the array and peripheral circuits as electrical isolation. Various techniques are included that increase the field coupling area between the floating gates and a control gate.
    Type: Application
    Filed: March 12, 2004
    Publication date: September 9, 2004
    Inventors: Jack H. Yuan, Eliyahou Harari, Yupin K. Fong, George Samachisa
  • Patent number: 6762092
    Abstract: An integrated non-volatile memory circuit is formed by first growing a thin dielectric layer on a semiconductor substrate surface, followed by depositing a layer of conductive material such as doped polysilicon on this dielectric layer, the conductive material then being separated into rows and columns of individual floating gates. Cell source and drain diffusions in the substrate are continuously elongated across the rows. Field dielectric deposited between the rows of floating gates provides electrical isolation between the rows. Shallow trenches may be included between rows without interrupting the conductivity of the diffusions along their lengths. A deep dielectric filled trench is formed in the substrate between the array and peripheral circuits as electrical isolation. Various techniques are included that increase the field coupling area between the floating gates and a control gate.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: July 13, 2004
    Assignee: SanDisk Corporation
    Inventors: Jack H. Yuan, Eliyahou Harari, Yupin K. Fong, George Samachisa
  • Publication number: 20040095797
    Abstract: An integrated non-volatile memory circuit is formed by first growing a thin dielectric layer on a semiconductor substrate surface, followed by depositing a layer of conductive material such as doped polysilicon on this dielectric layer, the conductive material then being separated into rows and columns of individual floating gates. Cell source and drain diffusions in the substrate are continuously elongated across the rows. Field dielectric deposited between the rows of floating gates provides electrical isolation between the rows. Shallow trenches may be included between rows without interrupting the conductivity of the diffusions along their lengths. A deep dielectric filled trench is formed in the substrate between the array and peripheral circuits as electrical isolation. Various techniques are included that increase the field coupling area between the floating gates and a control gate.
    Type: Application
    Filed: August 8, 2001
    Publication date: May 20, 2004
    Applicant: SanDisk Corporation
    Inventors: Jack H. Yuan, Eliyahou Harari, Yupin K. Fong, George Samachisa
  • Patent number: 6717851
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: April 6, 2004
    Assignee: SanDisk Corporation
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker N. Quader
  • Publication number: 20040027865
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Application
    Filed: July 1, 2003
    Publication date: February 12, 2004
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang, Khandker N. Quader
  • Publication number: 20040000688
    Abstract: Several embodiments of flash EEPROM split-channel cell arrays are described that position the channels of cell select transistors along sidewalls of trenches in the substrate, thereby reducing the cell area. Select transistor gates are formed as part of the word lines and extend downward into the trenches with capacitive coupling between the trench sidewall channel portion and the select gate. In one embodiment, trenches are formed between every other floating gate along a row, the two trench sidewalls providing the select transistor channels for adjacent cells, and a common source/drain diffusion is positioned at the bottom of the trench. A third gate provides either erase or steering capabilities. In another embodiment, trenches are formed between every floating gate along a row, a source/drain diffusion extending along the bottom of the trench and upwards along one side with the opposite side of the trench being the select transistor channel for a cell.
    Type: Application
    Filed: August 8, 2001
    Publication date: January 1, 2004
    Applicant: SanDisk Corporation
    Inventors: Eliyahou Harari, Jack H. Yuan, George Samachisa, Henry Chien
  • Publication number: 20030209751
    Abstract: Several embodiments of flash EEPROM split-channel cell arrays are described that position the channels of cell select transistors along sidewalls of trenches in the substrate, thereby reducing the cell area. Select transistor gates are formed as part of the word lines and extend downward into the trenches with capacitive coupling between the trench sidewall channel portion and the select gate. In one embodiment, trenches are formed between every other floating gate along a row, the two trench sidewalls providing the select transistor channels for adjacent cells, and a common source/drain diffusion being positioned at the bottom of the trench. A third gate provides either erase or steering capabilities. In another embodiment, trenches are formed between every floating gate along a row, a source/drain diffusion extending along the bottom of the trench and upwards along one side with the opposite side of the trench being the select transistor channel for a cell.
    Type: Application
    Filed: May 18, 2001
    Publication date: November 13, 2003
    Applicant: SanDisk Corporation
    Inventors: Eliyahou Harari, Jack H. Yuan, George Samachisa
  • Publication number: 20030109093
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them. In another form, NAND arrays of strings of memory cells store charge in regions of a dielectric layer sandwiched between word lines and the semiconductor substrate.
    Type: Application
    Filed: October 25, 2002
    Publication date: June 12, 2003
    Inventors: Eliyahou Harari, George Samachisa, Jack H. Yuan, Daniel C. Guterman
  • Patent number: 6570785
    Abstract: In a non-volatile memory, the displacement current generated in non-selected word lines that results when the voltage levels on an array's bit lines are changed can result in disturbs. Techniques for reducing these currents are presented. In a first aspect, the number of cells being simultaneously programmed on a word line is reduced. In a non-volatile memory where an array of memory cells is composed of a number of units, and the units are combined into planes that share common word lines, the simultaneous programming of units within the same plane is avoided. Multiple units may be programmed in parallel, but these are arranged to be in separate planes. This is done by selecting the number of units to be programmed in parallel and their order such that all the units programmed together are from distinct planes, by comparing the units to be programmed to see if any are from the same plane, or a combination of these.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: May 27, 2003
    Assignee: SanDisk Corporation
    Inventors: John S. Mangan, Daniel C. Guterman, George Samachisa, Brian Murphy, Chi-Ming Wang
  • Publication number: 20030082871
    Abstract: Non-volatile memory cells store a level of charge corresponding to the data being stored in a dielectric material storage element that is sandwiched between a control gate and the semiconductor substrate surface over channel regions of the memory cells. More than two memory states are provided by one of more than two levels of charge being stored in a common region of the dielectric material. More than one such common region may be included in each cell. In one form, two such regions are provided adjacent source and drain diffusions in a cell that also includes a select transistor positioned between them.
    Type: Application
    Filed: October 31, 2001
    Publication date: May 1, 2003
    Inventors: Eliyahou Harari, George Samachisa, Jack H. Yuan, Daniel C. Guterman