Patents by Inventor George T. Gillies

George T. Gillies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951303
    Abstract: The epicardial pacing system and related method includes an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing of the heart at one or more locations on the epicardial surface. The epicardial pacing catheter may include at least one electrode whereby the electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: April 9, 2024
    Assignee: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies
  • Patent number: 11937872
    Abstract: An aspect of various embodiments of the present invention system and method provide, but not limited thereto, a novel means for epicardial ablation using a double-curve steerable sheath and a double-curve deflectable open irrigated-tip/suction catheter that can be guided around the apex of the heart and adjusted so as to position the distal tip optimally. The catheter can also both deliver fluid to and withdraw fluid from the pericardial space. Access to the epicardial surface of the heart is via a subxiphoid entry. The method and means presented include, but are not limited to, steering, energy delivery, bipolar mapping, placement and use of electrodes, irrigation, suction of irrigation fluid, and other details of the subject invention.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: March 26, 2024
    Assignee: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies
  • Publication number: 20220362542
    Abstract: This invention provides an device for electrical stimulation of the spinal cord. The device has an electrode assembly with a sufficiently thin profile to be implanted between the pial surface of the spinal cord and the dura mater, and secured to the dura. Electrodes on the electrode assembly are directed towards the surface of the spinal cord, and connected through the dura to a signal generator located outside the dura. Following implantation, the subject is treated by transmitting electrical signals from the signal generator through the leads to the electrodes, stimulating the subject's spinal cord.
    Type: Application
    Filed: August 1, 2022
    Publication date: November 17, 2022
    Applicants: University of Iowa Research Foundation, University of Virginia Patend Foundation
    Inventors: Matthew A. Howard, Timothy Brennan, Brian Dalm, Marcel Utz, George T. Gillies, Steven Scott, Randall S. Nelson, Robert Shurig
  • Patent number: 11413449
    Abstract: This invention provides an device for electrical stimulation of the spinal cord. The device has an electrode assembly with a sufficiently thin profile to be implanted between the pial surface of the spinal cord and the dura mater, and secured to the dura. Electrodes on the electrode assembly are directed towards the surface of the spinal cord, and connected through the dura to a signal generator located outside the dura. Following implantation, the subject is treated by transmitting electrical signals from the signal generator through the leads to the electrodes, stimulating the subject's spinal cord.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: August 16, 2022
    Assignees: UNIVERSITY OF IOWA RESEARCH FOUNDATION, University of Virginia Patent Foundation
    Inventors: Matthew A. Howard, Timothy Brennan, Brian Dalm, Marcel Utz, George T. Gillies, Steven Scott, Randall S. Nelson, Robert Shurig
  • Patent number: 11241526
    Abstract: Provided is a method and system for delivering a diagnostic agent to a site in the brain of a subject for imaging at least a portion of the brain site on a medical imaging system. The method and system includes a catheter device with associated lumens having diagnostic agent ports for delivering the diagnostic agent (e.g., infusate) through the lumens and advancing the diagnostic agent so as to exit out from the lumens to at least a portion of the brain site and while sealing a portion of the brain site thereby preventing the exited diagnostic agent from travelling proximally beyond the sealing location, and at the same time imaging at least a portion of the brain site during at least a portion of the sealing duration so that the brain site can be visualized on a medical imaging system. The diagnostic agent (infusate) is able to highlight borders and internal patterns of the deep structures of the brain thereby enabling direct targeting.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: February 8, 2022
    Assignee: University of Virginia Patent Foundation
    Inventors: William J. Elias, Aaron E. Bond, George T. Gillies
  • Patent number: 11083381
    Abstract: Systems and methods for epicardial electrophysiology and other procedures are provided in which conditions at the location of an access needle may be determined according to the detection of different pressure frequencies in separate organs, or different locations, in the body of a subject. Methods may include inserting a needle including a first sensor into a body of a subject, and receiving pressure frequency information from the first sensor. A second sensor may be used to provide cardiac waveform information of the subject, and the pressure frequency information may be segmented based on the cardiac waveform information. Conditions at the current location of the needle may be determined based on an algorithm including the segmented pressure frequency information and the cardiac waveform information.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: August 10, 2021
    Assignee: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies, Jason Tucker-Schwartz
  • Patent number: 11058354
    Abstract: Systems and methods for epicardial electrophysiology and other procedures are provided in which the location of an access needle may be inferred according to the detection of different pressure frequencies in separate organs, or different locations, in the body of a subject. Methods may include inserting a needle including a first sensor into a body of a subject, and receiving pressure frequency information from the first sensor. A second sensor may be included with the access needle to provide image data and/or cardiac waveform information of the subject.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: July 13, 2021
    Assignee: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies, Jason M. Tucker-Schwartz
  • Patent number: 11013428
    Abstract: Systems and methods for epicardial electrophysiology and other procedures are provided in which the location of an access needle may be inferred according to the detection of different pressure frequencies in separate organs, or different locations, in the body of a subject. Methods may include inserting a needle including a first sensor into a body of a subject, and receiving pressure frequency information from the first sensor. A second sensor may be used to provide cardiac waveform information of the subject. A current location of the needle may be distinguished from another location based on an algorithm including the pressure frequency information and the cardiac waveform information.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: May 25, 2021
    Assignee: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies, Jason M. Tucker-Schwartz
  • Patent number: 10702335
    Abstract: An electrode catheter for use with an endocardial ablation catheter, wherein the electrode catheter receives the transmitted energy for ablating a portion of the heart. The electrode catheter comprises a proximal portion, a distal portion, and a longitudinal structure there between; and an electrode in communication with said electrode catheter, wherein said electrode receives the transmitted energy from the endocardial ablation catheter, or alternatively an epicardial ablation catheter.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: July 7, 2020
    Assignee: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies
  • Publication number: 20200179684
    Abstract: This invention provides an device for electrical stimulation of the spinal cord. The device has an electrode assembly with a sufficiently thin profile to be implanted between the pial surface of the spinal cord and the dura mater, and secured to the dura. Electrodes on the electrode assembly are directed towards the surface of the spinal cord, and connected through the dura to a signal generator located outside the dura. Following implantation, the subject is treated by transmitting electrical signals from the signal generator through the leads to the electrodes, stimulating the subject's spinal cord.
    Type: Application
    Filed: February 13, 2020
    Publication date: June 11, 2020
    Applicants: Universty of Iowa Research Foundation, University of Virginia Patent Foundation
    Inventors: Matthew A. Howard, Timothy Brennan, Brian Dalm, Marcel Utz, George T. Gillies, Steven Scott, Randall S. Nelson, Robert Shurig
  • Publication number: 20190274757
    Abstract: An aspect of various embodiments of the present invention system and method provide, but not limited thereto, a novel means for epicardial ablation using a double-curve steerable sheath and a double-curve deflectable open irrigated-tip/suction catheter that can be guided around the apex of the heart and adjusted so as to position the distal tip optimally. The catheter can also both deliver fluid to and withdraw fluid from the pericardial space. Access to the epicardial surface of the heart is via a subxiphoid entry. The method and means presented include, but are not limited to, steering, energy delivery, bipolar mapping, placement and use of electrodes, irrigation, suction of irrigation fluid, and other details of the subject invention.
    Type: Application
    Filed: December 31, 2018
    Publication date: September 12, 2019
    Inventors: Srijoy Mahapatra, George T. Gillies
  • Publication number: 20190070356
    Abstract: Provided is a method and system for delivering a diagnostic agent to a site in the brain of a subject for imaging at least a portion of the brain site on a medical imaging system. The method and system includes a catheter device with associated lumens having diagnostic agent ports for delivering the diagnostic agent (e.g., infusate) through the lumens and advancing the diagnostic agent so as to exit out from the lumens to at least a portion of the brain site and while sealing a portion of the brain site thereby preventing the exited diagnostic agent from travelling proximally beyond the sealing location, and at the same time imaging at least a portion of the brain site during at least a portion of the sealing duration so that the brain site can be visualized on a medical imaging system. The diagnostic agent (infusate) is able to highlight borders and internal patterns of the deep structures of the brain thereby enabling direct targeting.
    Type: Application
    Filed: November 6, 2018
    Publication date: March 7, 2019
    Applicant: University of Virginia Patent Foundation
    Inventors: William J. Elias, Aaron E. Bond, George T. Gillies
  • Patent number: 10166066
    Abstract: An aspect of various embodiments of the present invention system and method provide, but not limited thereto, a novel means for epicardial ablation using a double-curve steerable sheath and a double-curve deflectable open irrigated-tip/suction catheter that can be guided around the apex of the heart and adjusted so as to position the distal tip optimally. The catheter can also both deliver fluid to and withdraw fluid from the pericardial space. Access to the epicardial surface of the heart is via a subxiphoid entry. The method and means presented include, but are not limited to, steering, energy delivery, bipolar mapping, placement and use of electrodes, irrigation, suction of irrigation fluid, and other details of the subject invention.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: January 1, 2019
    Assignee: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies
  • Patent number: 10159782
    Abstract: Provided is a method and system for delivering a diagnostic agent to a site in the brain of a subject for imaging at least a portion of the brain site on a medical imaging system. The method and system includes a catheter device with associated lumens having diagnostic agent ports for delivering the diagnostic agent (e.g., infusate) through the lumens and advancing the diagnostic agent so as to exit out from the lumens to at least a portion of the brain site and while sealing a portion of the brain site thereby preventing the exited diagnostic agent from travelling proximally beyond the sealing location, and at the same time imaging at least a portion of the brain site during at least a portion of the sealing duration so that the brain site can be visualized on a medical imaging system. The diagnostic agent (infusate) is able to highlight borders and internal patterns of the deep structures of the brain thereby enabling direct targeting.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: December 25, 2018
    Assignee: University of Virginia Patent Foundation
    Inventors: William J. Elias, Aaron E. Bond, George T. Gillies
  • Publication number: 20180361145
    Abstract: The epicardial pacing system and related method includes an epicardial catheter configured to be disposed in the middle mediastinum of the thorax of a subject for use in electrical pacing of the heart at one or more locations on the epicardial surface. The epicardial pacing catheter may include at least one electrode whereby the electrode is insulated on at least one side to allow pacing of the heart without damage to adjacent anatomical structures.
    Type: Application
    Filed: April 23, 2018
    Publication date: December 20, 2018
    Inventors: Srijoy Mahapatra, George T. Gillies
  • Patent number: 10071240
    Abstract: This invention provides a device for implantation directly into the spinal cord for the purpose of treating back pain. Electrodes on a backing that conforms directly to the spinal cord are installed as a source of electrical stimulation and pain relief. The floating electrodes can be flexibly mounted to the substrate such that when the electrode array is implanted into the subject, individual electrodes float or move resiliently relative to the substrate to an extent sufficient to accommodate pulsations of the surface of the spinal cord within the dura.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: September 11, 2018
    Assignees: University of Iowa Research Foundation, University of Virgina Patent Foundation
    Inventors: Matthew A. Howard, Hiroyuki Oya, Steve Viljoen, Chandan G. Reddy, George T. Gillies
  • Publication number: 20170238823
    Abstract: Systems and methods for epicardial electrophysiology and other procedures are provided in which conditions at the location of an access needle may be determined according to the detection of different pressure frequencies in separate organs, or different locations, in the body of a subject. Methods may include inserting a needle including a first sensor into a body of a subject, and receiving pressure frequency information from the first sensor. A second sensor may be used to provide cardiac waveform information of the subject, and the pressure frequency information may be segmented based on the cardiac waveform information. Conditions at the current location of the needle may be determined based on an algorithm including the segmented pressure frequency information and the cardiac waveform information.
    Type: Application
    Filed: May 8, 2017
    Publication date: August 24, 2017
    Inventors: Srijoy Mahapatra, George T. Gillies, Jason Tucker-Schwartz
  • Publication number: 20170224968
    Abstract: Systems and methods for use in monitoring treatment of pressure-related conditions, such as hydrocephalus, include an implantable vessel, and a meter including one or more microfluidic channels connected to the vessel. The microfluidic channels may be configured to detect at least one of pressure and fluid flow rate through the vessel and to be read out remotely by a wirelessly coupled external device. The meter may include a passive resonant (LC) circuit. A dynamic flap may be included in the microfluidic channel that may act as part of the LC circuit. An external device may also be configured to inductively couple remotely to the LC circuit, with-out physical connections to the implantable vessel or pressure meter, and to display a pressure acting on the pressure meter and/or a fluid flow through the meter.
    Type: Application
    Filed: April 26, 2017
    Publication date: August 10, 2017
    Inventors: Marcel Utz, George T. Gillies, William Broaddus, John A. Jane, Matthew R. Begley
  • Publication number: 20170157390
    Abstract: This invention provides a device for implantation directly into the spinal cord for the purpose of treating back pain. Electrodes on a backing that conforms directly to the spinal cord are installed as a source of electrical stimulation and pain relief. The floating electrodes can be flexibly mounted to the substrate such that when the electrode array is implanted into the subject, individual electrodes float or move resiliently relative to the substrate to an extent sufficient to accommodate pulsations of the surface of the spinal cord within the dura.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 8, 2017
    Inventors: Matthew A. Howard, Hiroyuki Oya, Steve Viljoen, Chandan G. Reddy, George T. Gillies
  • Patent number: 9669198
    Abstract: A system and related method for delivering the anti-tumoral agent carmustine or other types of diagnostic or therapeutic agents into the brain of a patient with a brain tumor includes an insertion device, a skull mount, and a reformulated geometry of the carmustine compound (or other material) optimized for use in the insertion device and for maximized biodegradation time. The insertion device may be front loaded with the carmustine material (or other material) and inserted through the mount on a skull, to the location of the brain tumor, where the carmustine (or other material) is then released. It should be appreciated that the diagnostic and/or therapeutic system and related method thereof are not necessarily limited to the brain of a subject. It may also be used in the organ structures or tubular structures, as well as portions and locations thereof.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: June 6, 2017
    Assignees: University of Virginia Patent Foundation, Virginia Commonwealth University
    Inventors: William C. Broaddus, Rahul Mahajan, George T. Gillies