Patents by Inventor George T. Gillies

George T. Gillies has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9669198
    Abstract: A system and related method for delivering the anti-tumoral agent carmustine or other types of diagnostic or therapeutic agents into the brain of a patient with a brain tumor includes an insertion device, a skull mount, and a reformulated geometry of the carmustine compound (or other material) optimized for use in the insertion device and for maximized biodegradation time. The insertion device may be front loaded with the carmustine material (or other material) and inserted through the mount on a skull, to the location of the brain tumor, where the carmustine (or other material) is then released. It should be appreciated that the diagnostic and/or therapeutic system and related method thereof are not necessarily limited to the brain of a subject. It may also be used in the organ structures or tubular structures, as well as portions and locations thereof.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: June 6, 2017
    Assignees: University of Virginia Patent Foundation, Virginia Commonwealth University
    Inventors: William C. Broaddus, Rahul Mahajan, George T. Gillies
  • Patent number: 9642534
    Abstract: Systems and methods for epicardial electrophysiology and other procedures are provided in which the location of an access needle may be inferred according to the detection of different pressure frequencies in separate organs, or different locations, in the body of a subject. Methods may include inserting a needle including a first sensor into a body of a subject, and receiving pressure frequency information from the first sensor. A second sensor may be used to provide cardiac waveform information of the subject. A current location of the needle may be distinguished from another location based on an algorithm including the pressure frequency information and the cardiac waveform information.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: May 9, 2017
    Assignee: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies, Jason Tucker-Schwartz
  • Patent number: 9636487
    Abstract: Systems and methods for use in monitoring treatment of pressure-related conditions, such as hydrocephalus, include an implantable vessel, and a meter including one or more microfluidic channels connected to the vessel. The microfluidic channels may be configured to detect at least one of pressure and fluid flow rate through the vessel and to be read out remotely by a wirelessly coupled external device. The meter may include a passive resonant (LC) circuit. A dynamic flap may be included in the microfluidic channel that may act as part of the LC circuit. An external device may also be configured to inductively couple remotely to the LC circuit, with-out physical connections to the implantable vessel or pressure meter, and to display a pressure acting on the pressure meter and/or a fluid flow through the meter.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 2, 2017
    Assignee: University of Virginia Patent Foundation
    Inventors: Marcel Utz, George T. Gillies, William Broaddus, John A. Jane, Matthew R. Begley
  • Publication number: 20170086707
    Abstract: Systems and methods for epicardial electrophysiology and other procedures are provided in which the location of an access needle may be inferred according to the detection of different pressure frequencies in separate organs, or different locations, in the body of a subject. Methods may include inserting a needle including a first sensor into a body of a subject, and receiving pressure frequency information from the first sensor. A second sensor may be used to provide cardiac waveform information of the subject. A current location of the needle may be distinguished from another location based on an algorithm including the pressure frequency information and the cardiac waveform information.
    Type: Application
    Filed: October 17, 2016
    Publication date: March 30, 2017
    Applicant: University of Virginia Patent Foundation
    Inventors: Srijoy Mahapatra, George T. Gillies, Jason M. Tucker-Schwartz
  • Publication number: 20170065814
    Abstract: A method for treating intractable pain via electrical stimulation of the spinal cord. Remote, non-contact stimulation of a selected region of spinal cord is achieved by placement of a transceiver patch directly on the surface of that region of spinal cord, with said patch optionally being inductively coupled to a transmitter patch of similar size on either the outer or inner wall of the dura surrounding that region of the spinal cord. By inductively exchanging electrical power and signals between said transmitter and transceiver patches, and by carrying out the necessary electronic and stimulus signal distribution functions on the transceiver patch, the targeted dorsal column axons can be stimulated without the unintended stray stimulation of nearby dorsal rootlets. Novel configurations of a pliable surface-sheath and clamp or dentate ligament attachment features which realize undamaging attachment of the patch to the spinal cord are described.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 9, 2017
    Inventors: Matthew Howard, Timothy Brennan, Brian Dalm, Marcel Utz, George T. Gillies, Steven Scott, Randall S. Nelson, Robert Shurig
  • Publication number: 20160331445
    Abstract: An electrode catheter for use with an endocardial ablation catheter, wherein the electrode catheter receives the transmitted energy for ablating a portion of the heart. The electrode catheter comprises a proximal portion, a distal portion, and a longitudinal structure there between; and an electrode in communication with said electrode catheter, wherein said electrode receives the transmitted energy from the endocardial ablation catheter, or alternatively an epicardial ablation catheter.
    Type: Application
    Filed: December 14, 2015
    Publication date: November 17, 2016
    Applicant: University of Virginia Patent Foundation
    Inventors: Srijoy MAHAPATRA, George T. GILLIES
  • Patent number: 9486621
    Abstract: A method for treating intractable pain via electrical stimulation of the spinal cord. Remote, non-contact stimulation of a selected region of spinal cord is achieved by placement of a transceiver patch directly on the surface of that region of spinal cord, with said patch optionally being inductively coupled to a transmitter patch of similar size on either the outer or inner wall of the dura surrounding that region of the spinal cord. By inductively exchanging electrical power and signals between said transmitter and transceiver patches, and by carrying out the necessary electronic and stimulus signal distribution functions on the transceiver patch, the targeted dorsal column axons can be stimulated without the unintended stray stimulation of nearby dorsal rootlets. Novel configurations of a pliable surface-sheath and clamp or dentate ligament attachment features which realize undamaging attachment of the patch to the spinal cord are described.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: November 8, 2016
    Assignees: University of Iowa Research Foundation, University of Virginia Patent Foundation
    Inventors: Matthew Howard, Timothy Brennan, Brian Dalm, Marcel Utz, George T. Gillies, Steven Scott, Randall S. Nelson, Robert Shurig
  • Patent number: 9468396
    Abstract: Systems and methods for epicardial electrophysiology and other procedures are provided in which the location of an access needle may be inferred according to the detection of different pressure frequencies in separate organs, or different locations, in the body of a subject. Methods may include inserting a needle including a first sensor into a body of a subject, and receiving pressure frequency information from the first sensor. A second sensor may be used to provide cardiac waveform information of the subject. A current location of the needle may be distinguished from another location based on an algorithm including the pressure frequency information and the cardiac waveform information.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: October 18, 2016
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Srijoy Mahapatra, George T. Gillies, Jason M Tucker-Schwartz
  • Patent number: 9364660
    Abstract: A method for treating intractable pain via electrical stimulation of the spinal cord. Remote, non-contact stimulation of a selected region of spinal cord is achieved by placement of a transceiver patch directly on the surface of that region of spinal cord, with said patch optionally being inductively coupled to a transmitter patch of similar size on either the outer or inner wall of the dura surrounding that region of the spinal cord. By inductively exchanging electrical power and signals between said transmitter and transceiver patches, and by carrying out the necessary electronic and stimulus signal distribution functions on the transceiver patch, the targeted dorsal column axons can be stimulated without the unintended stray stimulation of nearby dorsal rootlets. Novel configurations of a pliable surface-sheath and clamp or dentate ligament attachment features which realize undamaging attachment of the patch to the spinal cord are described.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: June 14, 2016
    Assignees: University of Iowa Research Foundation, University of Virginia Patent Foundation
    Inventors: Matthew Howard, Timothy Brennan, Brian Dalm, Marcel Utz, George T. Gillies, Steven Scott, Randall S. Nelson, Robert Shurig
  • Publication number: 20160100797
    Abstract: Systems and methods for epicardial electrophysiology and other procedures are provided in which the location of an access needle may be inferred according to the detection of different pressure frequencies in separate organs, or different locations, in the body of a subject. Methods may include inserting a needle including a first sensor into a body of a subject, and receiving pressure frequency information from the first sensor. A second sensor may be included with the access needle to provide image data and/or cardiac waveform information of the subject.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 14, 2016
    Inventors: Srijoy Mahapatra, George T. Gillies, Jason M. Tucker-Schwartz
  • Patent number: 9211405
    Abstract: An electrode catheter for use with an endocardial ablation catheter, wherein the electrode catheter receives the transmitted energy for ablating a portion of the heart. The electrode catheter comprises a proximal portion, a distal portion, and a longitudinal structure there between; and an electrode in communication with said electrode catheter, wherein said electrode receives the transmitted energy from the endocardial ablation catheter, or alternatively an epicardial ablation catheter.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: December 15, 2015
    Assignee: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Srijoy Mahapatra, George T. Gillies
  • Publication number: 20150343205
    Abstract: A method for treating intractable pain via electrical stimulation of the spinal cord. Remote, non-contact stimulation of a selected region of spinal cord is achieved by placement of a transceiver patch directly on the surface of that region of spinal cord, with said patch optionally being inductively coupled to a transmitter patch of similar size on either the outer or inner wall of the dura surrounding that region of the spinal cord. By inductively exchanging electrical power and signals between said transmitter and transceiver patches, and by carrying out the necessary electronic and stimulus signal distribution functions on the transceiver patch, the targeted dorsal column axons can be stimulated without the unintended stray stimulation of nearby dorsal rootlets. Novel configurations of a pliable surface-sheath and clamp or dentate ligament attachment features which realize undamaging attachment of the patch to the spinal cord are described.
    Type: Application
    Filed: August 7, 2015
    Publication date: December 3, 2015
    Inventors: Matthew Howard, Timothy Brennan, Brian Dalm, Marcel Utz, George T. Gillies, Steven Scott, Randall S. Nelson, Robort Shurig
  • Patent number: 9192408
    Abstract: System and method that is directed to medical treatments of organs having anatomical spaces, such as (but not limited to) the heart and the pericardial space. Specifically, an apparatus and method is provided for safely accessing anatomical spaces with surfaces to deliver medical devices or media into such spaces, or to remove fluids from such spaces. The methods and apparatus may include a first elongated member with a sharp tip used to penetrate the surface surrounding the anatomical space with a second elongated member with a helical tine used to engage the surface and lift the surface away from the underlying anatomical space. Once the first elongated member has incised the surface, it is removed, and the incision may be used as a point of entry for delivering media or medical devices into the anatomical space, or for carrying out further medical procedures.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 24, 2015
    Assignee: University of Virginia Patent Foundation
    Inventors: George T. Gillies, Peter Pollak, Srijoy Mahapatra
  • Publication number: 20150238685
    Abstract: Provided is a method and system for delivering a diagnostic agent to a site in the brain of a subject for imaging at least a portion of the brain site on a medical imaging system. The method and system includes a catheter device with associated lumens having diagnostic agent ports for delivering the diagnostic agent (e.g., infusate) through the lumens and advancing the diagnostic agent so as to exit out from the lumens to at least a portion of the brain site and while sealing a portion of the brain site thereby preventing the exited diagnostic agent from travelling proximally beyond the sealing location, and at the same time imaging at least a portion of the brain site during at least a portion of the sealing duration so that the brain site can be visualized on a medical imaging system. The diagnostic agent (infusate) is able to highlight borders and internal patterns of the deep structures of the brain thereby enabling direct targeting.
    Type: Application
    Filed: September 18, 2013
    Publication date: August 27, 2015
    Applicant: University of Virginia Patent Foundation
    Inventors: William J. ELIAS, Aaron E. BOND, George T. GILLIES
  • Publication number: 20150182253
    Abstract: System and method that is directed to medical treatments of organs having anatomical spaces, such as (but not limited to) the heart and the pericardial space. Specifically, an apparatus and method is provided for safely accessing anatomical spaces with surfaces to deliver medical devices or media into such spaces, or to remove fluids from such spaces. The methods and apparatus may include a first elongated member with a sharp tip used to penetrate the surface surrounding the anatomical space with a second elongated member with a helical tine used to engage the surface and lift the surface away from the underlying anatomical space. Once the first elongated member has incised the surface, it is removed, and the incision may be used as a point of entry for delivering media or medical devices into the anatomical space, or for carrying out further medical procedures.
    Type: Application
    Filed: December 8, 2014
    Publication date: July 2, 2015
    Inventors: George T. Gillies, Peter Pollak, Srijoy Mahapatra
  • Patent number: 8906056
    Abstract: System and method that is directed to medical treatments of organs having anatomical spaces, such as (but not limited to) the heart and the pericardial space. Specifically, an apparatus and method is provided for safely accessing anatomical spaces with surfaces to deliver medical devices or media into such spaces, or to remove fluids from such spaces. The methods and apparatus may include a first elongated member with a sharp tip used to penetrate the surface surrounding the anatomical space with a second elongated member with a helical tine used to engage the surface and lift the surface away from the underlying anatomical space. Once the first elongated member has incised the surface, it is removed, and the incision may be used as a point of entry for delivering media or medical devices into the anatomical space, or for carrying out further medical procedures.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: December 9, 2014
    Assignee: University of Virginia Patent Foundation
    Inventors: George T. Gillies, Peter Pollak, Srijoy Mahapatra
  • Publication number: 20140128955
    Abstract: A method for treating intractable pain via electrical stimulation of the spinal cord. Remote, non-contact stimulation of a selected region of spinal cord is achieved by placement of a transceiver patch directly on the surface of that region of spinal cord, with said patch optionally being inductively coupled to a transmitter patch of similar size on either the outer or inner wall of the dura surrounding that region of the spinal cord. By inductively exchanging electrical power and signals between said transmitter and transceiver patches, and by carrying out the necessary electronic and stimulus signal distribution functions on the transceiver patch, the targeted dorsal column axons can be stimulated without the unintended stray stimulation of nearby dorsal rootlets. Novel configurations of a pliable surface-sheath and clamp or dentate ligament attachment features which realize undamaging attachment of the patch to the spinal cord are described.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 8, 2014
    Applicants: University of Virginia Patent Foundation, University of Iowa Research Foundation
    Inventors: Matthew Howard, Timothy Brennan, Brian Dalm, Marcel Utz, George T. Gillies, Steven Scott, Randall S. Nelson, Robert Shurig
  • Patent number: 8655798
    Abstract: A catheterization device that may be designed by use of an adaptive genetic algorithm computational fluid dynamics approach, as well as other Global Optimization methods that may include simulated annealing, multistart and interval methods, continuous branch and bound methods, evolutionary algorithms, and tabu search and scatter search methods, as well as other available Global Optimization methods that is able to maximize/optimize the dwell time of an infused agent in the vicinity of a vascular lesion. The device may have an internal by-pass channel that allows the blood upstream of the lesion to continue its pulsatile flow through the vessel in the part of it occluded by the lesion, while simultaneously allowing the disbursement and maximal dwell time of an antithrombolytic or other diagnostic or therapeutic agent needed to treat the lesion.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 18, 2014
    Assignee: University of Virginia Patent Foundation
    Inventors: Joseph A. C. Humphrey, George T. Gillies
  • Publication number: 20130303967
    Abstract: Systems and methods for use in monitoring treatment of pressure-related conditions, such as hydrocephalus, include an implantable vessel, and a meter including one or more microfluidic channels connected to the vessel. The microfluidic channels may be configured to detect at least one of pressure and fluid flow rate through the vessel and to be read out remotely by a wirelessly coupled external device. The meter may include a passive resonant (LC) circuit. A dynamic flap may be included in the microfluidic channel that may act as part of the LC circuit. An external device may also be configured to inductively couple remotely to the LC circuit, with-out physical connections to the implantable vessel or pressure meter, and to display a pressure acting on the pressure meter and/or a fluid flow through the meter.
    Type: Application
    Filed: June 17, 2011
    Publication date: November 14, 2013
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Marcel Utz, George T. Gillies, William Broaddus, John A. Jane, Matthew R. Begley
  • Publication number: 20130096428
    Abstract: An access system and method for obtaining access to the interior vascular structures or other regions or collections of fluid or fluid-filled cavities inside the body. The system and method provides for injection of contrast agents (to confirm ideal position or condition), the passage of guide wires, and the eventual catheterization of the heart and other parts of the body via the pathway established through the puncture of a femoral artery. The system and method provides the ability to inject a contrast material and pass a guide wire through the same introducer device simultaneously (without necessarily moving it or removing any parts), with the device designed to prevent the backflow of the contrast material through the guide wire port during the contrast injection process The ideal location of access in the vein or artery can be seen by injecting contrast from a needle inside the structure and then using fluoroscopy.
    Type: Application
    Filed: December 21, 2010
    Publication date: April 18, 2013
    Applicant: University of Virginia Patent Foundation
    Inventors: George T. Gillies, Srijoy Mahapatra, D. Scott Lim, Michael Ragosta