Patents by Inventor George Theodore Dalakos

George Theodore Dalakos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190110354
    Abstract: System includes a particle accelerator configured to direct a particle beam of charged particles along a designated path. The system also includes an extraction device positioned downstream from the particle accelerator. The extraction device includes a stripper foil and a foil holder that holds the stripper foil. The foil holder is configured to position the stripper foil across the designated path of the particle beam such that the particle beam is incident thereon. The stripper foil is configured to remove electrons from the charged particles, wherein the stripper foil includes a backing layer and a conductive layer stacked with respect to one another. The backing layer includes synthetic diamond.
    Type: Application
    Filed: October 6, 2017
    Publication date: April 11, 2019
    Inventors: Yong Liang, Tomas Eriksson, Vasile Neculaes, George Theodore Dalakos
  • Publication number: 20180005794
    Abstract: The present disclosure relates to the production and use of a multi-layer X-ray source target. In certain implementations, layers of X-ray generating material may be interleaved with thermally conductive layers. To prevent delamination of the layers, various mechanical, chemical, and structural approaches are related, including approaches for reducing the internal stress associated with the deposited layers and for increasing binding strength between layers.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Yong Liang, Vance Scott Robinson, Thomas Robert Raber, George Theodore Dalakos
  • Publication number: 20180005795
    Abstract: The present disclosure relates to the production and use of a multi-layer X-ray source target. In certain implementations, layers of X-ray generating material may be interleaved with thermally conductive layers. To prevent delamination of the layers, various mechanical, chemical, and structural approaches are related, including approaches for reducing the internal stress associated with the deposited layers and for increasing binding strength between layers.
    Type: Application
    Filed: April 13, 2017
    Publication date: January 4, 2018
    Inventors: Vance Scott Robinson, Yong Liang, Thomas Robert Raber, George Theodore Dalakos, Christoph Wild
  • Patent number: 9715989
    Abstract: In one embodiment, an X-ray source target is provided that includes two or more layers of X-ray generating material at different depths within a source target for an electron beam. In one such embodiment the X-ray generating material in each layer does not extend fully across an underlying substrate surface.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: July 25, 2017
    Assignee: General Electric Company
    Inventors: George Theodore Dalakos, Mark Alan Frontera, Vance Scott Robinson
  • Patent number: 9646801
    Abstract: In various embodiments, a multi-layer X-ray source target is provided having two or more layers of target material at different depths and different thicknesses. In one such embodiment the X-ray generating layers increase in thickness in relationship to their depth relative to the electron beam facing surface of the source target, such that X-ray generating layer further from this surface are thick than X-ray generating layers closer to the electron beam facing surface.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: May 9, 2017
    Assignee: General Electric Company
    Inventors: George Theodore Dalakos, Mark Alan Frontera, Vance Scott Robinson, William Robert Ross, Xi Zhang
  • Patent number: 9472783
    Abstract: The present techniques provide systems and methods for protecting electronic devices such as organic light emitting devices (OLEDs) from adverse environmental effects using a thin film encapsulation with reduced process time. In some embodiments, the process time of forming a graded barrier over the OLED structure may take less than 5 minutes, and may result in substantially similar barrier properties as those of metal and epoxy sealants and/or typical thin film encapsulations. The process time of forming the barrier may be reduced by increasing deposition rates for organic and/or inorganic materials, reducing the thicknesses of organic and/or inorganic layers, and/or varying the number of zones in the barrier.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: October 18, 2016
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Brian Joseph Scherer
  • Publication number: 20160300685
    Abstract: In one embodiment, an X-ray source target is provided that includes two or more layers of X-ray generating material at different depths within a source target for an electron beam. In one such embodiment the X-ray generating material in each layer does not extend fully across an underlying substrate surface.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 13, 2016
    Inventors: George Theodore Dalakos, Mark Alan Frontera, Vance Scott Robinson
  • Publication number: 20160300686
    Abstract: In various embodiments, a multi-layer X-ray source target is provided having two or more layers of target material at different depths and different thicknesses. In one such embodiment the X-ray generating layers increase in thickness in relationship to their depth relative to the electron beam facing surface of the source target, such that X-ray generating layer further from this surface are thick than X-ray generating layers closer to the electron beam facing surface.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 13, 2016
    Inventors: George Theodore Dalakos, Mark Alan Frontera, Vance Scott Robinson, William Robert Ross, Xi Zhang
  • Patent number: 9147582
    Abstract: A method of manufacturing semiconductor assemblies is provided. The manufacturing method includes thermally processing a first semiconductor assembly comprising a first semiconductor layer disposed on a first support and thermally processing a second semiconductor assembly comprising a second semiconductor layer disposed on a second support. The first and second semiconductor assemblies are thermally processed simultaneously, and the first and second semiconductor assemblies are arranged such that the first semiconductor layer faces the second semiconductor layer during the thermal processing.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 29, 2015
    Assignee: First Solar, Inc.
    Inventors: Jinbo Cao, Bastiaan Arie Korevaar, George Theodore Dalakos, Aharon Yakimov, Scott D. Feldman-Peabody, Dalong Zhong, Juan Carlos Rojo
  • Patent number: 8753711
    Abstract: The present techniques provide systems and methods for protecting electronic devices, such as organic light emitting devices (OLEDs) from adverse environmental effects. The edges of the devices may also be protected by a edge protection coating to reduce the adverse affects of a lateral ingress of adverse environmental conditions. In some embodiments, inorganic materials, or a combination of inorganic and organic materials, are deposited over the device to form a edge protection coating which extends approximately 3 millimeter or less beyond the edges of the device. In other embodiments, the device may be encapsulated with an organic region, and with an inorganic region, or the device may be encapsulated with inorganic materials, which may form the edge protection coating and may be combined with ultra high barrier technology. The coatings formed over the device may extend beyond the edges of the device to ensure lateral protection.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: June 17, 2014
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Brian Joseph Scherer
  • Patent number: 8476105
    Abstract: In one aspect of the present invention, a method is provided. The method includes disposing a substantially amorphous cadmium tin oxide layer on a support; and thermally processing the substantially amorphous cadmium tin oxide layer in an atmosphere substantially free of cadmium from an external source to form a transparent layer, wherein the transparent layer has an electrical resistivity less than about 2×10?4 Ohm-cm. Method of making a photovoltaic device is also provided.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Holly Ann Blaydes, George Theodore Dalakos, David William Vernooy, Allan Robert Northrup, Juan Carlos Rojo, Peter Joel Meschter, Hongying Peng, Hongbo Cao, Yangang Andrew Xi, Robert Dwayne Gossman, Anping Zhang
  • Publication number: 20130157405
    Abstract: A method of manufacturing semiconductor assemblies is provided. The manufacturing method includes thermally processing a first semiconductor assembly comprising a first semiconductor layer disposed on a first support and thermally processing a second semiconductor assembly comprising a second semiconductor layer disposed on a second support. The first and second semiconductor assemblies are thermally processed simultaneously, and the first and second semiconductor assemblies are arranged such that the first semiconductor layer faces the second semiconductor layer during the thermal processing.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jinbo Cao, Bastiaan Arie Korevaar, George Theodore Dalakos, Aharon Yakimov, Scott D. Feldman-Peabody, Dalong Zhong, Juan Carlos Rojo
  • Publication number: 20130133731
    Abstract: Methods for forming a resistive transparent buffer layer on a substrate are provided. The method can include depositing a resistive transparent buffer layer on a transparent conductive oxide layer on a substrate. The resistive transparent buffer layer can comprise a cadmium doped tin oxide that has an as-deposited stoichiometry where cadmium is present in an atomic amount that is less than 33% of a total atomic amount of tin and cadmium. Zinc may also be provided in the resistive transparent buffer layer in certain embodiments. Additionally, thin film photovoltaic devices having such resistive transparent buffer layers are provided.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman, George Theodore Dalakos, Anping Zhang, Allan Robert Northrup, Hong Piao, Laurie Le Tarte
  • Publication number: 20130109124
    Abstract: In one aspect of the present invention, a method is included. The method includes thermally processing an assembly to form at least one transparent layer. The assembly includes a first panel including a first layer disposed on a first support and a second panel including a second layer disposed on a second support, wherein the second panel faces the first panel, and wherein the first layer and the second layer include substantially amorphous cadmium tin oxide. Method of making a photovoltaic device is also included.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hongying Peng, Juan Carlos Rojo, Hongbo Cao, George Theodore Dalakos, Holly Ann Blaydes, David William Vernooy, Mark Jeffrey Pavol, Jae Hyuk Her, Hong Piao, Robert Dwayne Gossman, Scott Daniel Feldman-Peabody, Yangang Andrew Xi
  • Patent number: 8369671
    Abstract: In one aspect, the present invention provides a hermetically sealed fiber sensing cable comprising: a core fiber comprising at least one Bragg grating region, an outer surface and a length; a fiber cladding in contact with the core fiber along the entire length of the core fiber, the fiber cladding having an outer surface and a length; a carbon layer disposed upon the outer surface of the fiber cladding along the entire length of the fiber cladding, the carbon layer comprising diamond-like carbon; a hydrogen ion absorption layer in contact with the carbon layer, the hydrogen ion absorption layer being disposed on the outer surface of the carbon layer; and an outer sleeve. Also provided in another aspect of the present invention, is a component for a hermetically sealed fiber sensing cable.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: February 5, 2013
    Assignee: General Electric Company
    Inventors: Hua Xia, Axel Busboom, Kevin Matthew Durocher, Renato Guida, George Theodore Dalakos, Glen Peter Koste, Boon Kwee Lee
  • Patent number: 8354166
    Abstract: Present invention provides a film and an article including the film. The film includes first layer, second layer and third layer. The first layer includes a polymer dielectric material. The second layer is disposed on at least one surface of the first layer and includes inorganic oxide dielectric material. The third layer is disposed on the first or second layer and includes a nitride or oxynitride material.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: January 15, 2013
    Assignee: General Electric Company
    Inventors: Daniel Qi Tan, George Theodore Dalakos, Yang Cao, Qin Chen, Ri-an Zhao
  • Publication number: 20120219791
    Abstract: Present invention provides a film and an article including the film. The film includes first layer, second layer and third layer. The first layer includes a polymer dielectric material. The second layer is disposed on at least one surface of the first layer and includes inorganic oxide dielectric material. The third layer is disposed on the first or second layer and includes a nitride or oxynitride material.
    Type: Application
    Filed: February 28, 2011
    Publication date: August 30, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel Qi Tan, George Theodore Dalakos, Yang Cao, Qin Chen, Ri-an Zhao
  • Publication number: 20120164785
    Abstract: In one aspect of the present invention, a method is provided. The method includes disposing a substantially amorphous cadmium tin oxide layer on a support; and thermally processing the substantially amorphous cadmium tin oxide layer in an atmosphere substantially free of cadmium from an external source to form a transparent layer, wherein the transparent layer has an electrical resistivity less than about 2×10?4 Ohm-cm. Method of making a photovoltaic device is also provided.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Holly Ann Blaydes, George Theodore Dalakos, David William Vernooy, Allan Robert Northrup, Juan Carlos Rojo, Peter Joel Meschter, Hongying Peng, Hongbo Cao, Yangang Andrew Xi, Robert Dwayne Gossman, Anping Zhang
  • Patent number: 8094431
    Abstract: In one aspect of the present invention, a method for increasing the dielectric breakdown strength of a polymer is described. The method comprises providing the polymer and contacting a surface of the polymer in a reaction chamber with a gas plasma, under specified plasma conditions. The polymer is selected from the group consisting of a polymer having a glass transition temperature of at least about 150° C., and a polymer composite comprising at least one inorganic constituent. The contact with the gas plasma is carried out for a period of time sufficient to incorporate additional chemical functionality into a surface region of the polymer film, to provide a treated polymer. Also provided are an article and method of manufacture.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: January 10, 2012
    Assignee: General Electric Company
    Inventors: Daniel Qi Tan, Patricia Chapman Irwin, George Theodore Dalakos, Yang Cao
  • Patent number: 8033885
    Abstract: In a method for depositing a barrier coating, a device is provided comprising a first portion and a second portion where a surface of the second portion is in a shadow zone. The device is pretreated wherein the pretreating alters a deposition rate of the barrier coating on a surface exposed to the pretreating. The shadow zone is substantially unexposed to the pretreating. A barrier coating is deposited wherein the barrier coating substantially conforms to a profile of the device. The coating may be a graded-composition barrier coating wherein a composition of the coating varies substantially continuously across a thickness thereof. The first portion may include a flexible, substantially transparent substrate. The second portion may include an electronic device. The barrier coating and first portion may encapsulate the second portion. The method is a single, commercially advantageous, barrier deposition process, enabling increased product throughput and low process tact time.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 11, 2011
    Assignee: General Electric Company
    Inventors: Ahmet Gun Erlat, George Theodore Dalakos, Min Yan, Shelia Neumann Tandon, Brian Joseph Scherer