Patents by Inventor George Tsu-Chih Chiu

George Tsu-Chih Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10072969
    Abstract: A device and method for sensing including a sensor having a functional surface layer located to interact with a material to be sensed, the sensor having an output that produces a signal responsive one or more of inertia, stiffness, acceleration, pressure, radiation, chemical compounds, and biological compounds; and further including electronics including: an input coupled to the sensor to receive a first signal therefrom; and a non-linearity provider that applies one or more non-linear operations to the input signal to generate a non-linear second signal.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: September 11, 2018
    Assignee: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj, Andrew Burke Sabater
  • Publication number: 20180180466
    Abstract: A device and method for sensing including a sensor having a functional surface layer located to interact with a material to be sensed, the sensor having an output that produces a signal responsive one or more of inertia, stiffness, acceleration, pressure, radiation, chemical compounds, and biological compounds; and further including electronics including: an input coupled to the sensor to receive a first signal therefrom; and a non-linearity provider that applies one or more non-linear operations to the input signal to generate a non-linear second signal.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 28, 2018
    Applicant: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj, Andrew Burke Sabater
  • Patent number: 9927287
    Abstract: A device and method for sensing including a sensor having a functional surface layer located to interact with a material to be sensed, the sensor having an output that produces a signal responsive one or more of inertia, stiffness, acceleration, pressure, radiation, chemical compounds, and biological compounds; and further including electronics including: an input coupled to the sensor to receive a first signal therefrom; and a non-linearity provider that applies one or more non-linear operations to the input signal to generate a non-linear second signal.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: March 27, 2018
    Assignee: Purdue Research Foundation
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj, Andrew Burke Sabater
  • Publication number: 20160290855
    Abstract: A device and method for sensing including a sensor having a functional surface layer located to interact with a material to be sensed, the sensor having an output that produces a signal responsive one or more of inertia, stiffness, acceleration, pressure, radiation, chemical compounds, and biological compounds; and further including electronics including: an input coupled to the sensor to receive a first signal therefrom; and a non-linearity provider that applies one or more non-linear operations to the input signal to generate a non-linear second signal.
    Type: Application
    Filed: December 17, 2015
    Publication date: October 6, 2016
    Inventors: Jeffrey Frederick Rhoads, George Tsu-Chih Chiu, Nikhil Bajaj, Andrew Burke Sabater
  • Patent number: 9014578
    Abstract: Control parameters of a printing device are optimized using a process model to reduce a process tone reproduction curve (TRC) error between a process TRC and a desired TRC. Tone-corrected halftone levels for the printing device are generated using a sensor model to reduce a printing device TRC error between a TRC of the printing device and the desired TRC, based on color patches printed by the printing device using the control parameters as have been optimized, as measured by one or more sensors of the printing device.
    Type: Grant
    Filed: August 15, 2010
    Date of Patent: April 21, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: YanFu Kuo, Chao-Lung Yang, George Tsu-Chih Chiu, Yuehwern Yih, Jan Allebach, Dennis Alan Abramsohn
  • Publication number: 20130114965
    Abstract: Control para met of a printing device are optimized using a process model to reduce a process tone reproduction curve (TRC) error between a process TRC and a desired TRC. Tone-corrected halftone levels for the printing device are generated using a sensor model to reduce a printing device TRC error between a TRC of the printing device and the desired TRC, based on color patches printed by the printing device using the control parameters as have been optimized, as measured by one or more sensors of the printing device.
    Type: Application
    Filed: August 15, 2010
    Publication date: May 9, 2013
    Inventors: YanFu Kuo, Chao-Lung Yang, George Tsu-Chih Chiu, Yuehwern Yih, Jan Allebach, Dennis Alan Abramsohn
  • Publication number: 20020159791
    Abstract: An electrophotographic device uses a closed loop controller that receives a feedback signal from an encoder connected to the OPC drum to improve the rotational velocity control of the drum. The encoder provides the rotational position or angular velocity of the drum to the closed loop controller as the feedback signal. In one embodiment, the electrophotographic device uses a closed loop controller that incorporates a model of the human visual system, such as the human contrast sensitivity function, to help reduce noticeable banding artifacts. The human contrast sensitivity function incorporated into the primary control loop helps filter out low frequency and non-periodic drum rotational velocity fluctuations in producing banding artifacts. The electrophotographic device may also include a repetitive controller in a secondary control loop to help reduce the effect of periodic drum rotational velocity fluctuations in producing banding artifacts.
    Type: Application
    Filed: March 7, 2001
    Publication date: October 31, 2002
    Inventors: Cheng-Lun Chen, George Tsu-Chih Chiu
  • Patent number: 6456808
    Abstract: Systems and methods for reducing banding artifact in electrophotographic devices are provided. One such electrophotographic device uses a closed loop controller that receives a feedback signal from an encoder connected to the OPC drum to improve the rotational velocity control of the drum. The encoder provides the rotational position or angular velocity of the drum to the closed loop controller as the feedback signal. Optionally, the electrophotographic device uses a closed loop controller that incorporates a model of the human visual system, such as the human contrast sensitivity function, to help reduce noticeable banding artifacts. The human contrast sensitivity function incorporated into the primary control loop helps filter out low frequency and non-periodic drum rotational velocity fluctuations in producing banding artifacts.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: September 24, 2002
    Assignees: Hewlett-Packard Company, Purdue Research Foundation
    Inventors: Cheng-Lun Chen, George Tsu-Chih Chiu
  • Patent number: 6290037
    Abstract: The present invention relates to a vibration absorber in which an absorber end mass is coupled to a primary mass by means of a cantilevered beam, wherein at least a portion of the beam comprises a shape memory alloy (SMA). Preferably, the end mass is coupled to the primary mass with several discrete SMA wires which may be individually heated. When each of the SMA wires is heated above a predetermined temperature, the SMA material undergoes a phase change which results in a change in the stiffness of the SMA wire. Heating of the various wires in various combinations allows the operational frequency of the absorber to be actively tuned. The frequency of the absorber may therefore be tuned to closely match the current vibrational frequency of the primary mass, thereby allowing the absorber to be adaptively tuned to the frequency of the primary mass in a simple and straightforward manner.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: September 18, 2001
    Assignee: Purdue Research Foundation
    Inventors: Keith A. Williams, George Tsu-Chih Chiu, Robert J. Bernhard