Patents by Inventor Gerard J. Sullivan

Gerard J. Sullivan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6466005
    Abstract: A current sensor includes a deflectable member disposed in a magnetic field. Nulling or compensating members may be mechanically coupled to the deflectable member. Feedback or readout devices coupled to the structure provide signals indicative of deflection of the deflectable member under the influence of applied current and the magnetic field. Nulling current applied to the nulling members tends to oppose deflection of the deflectable member. The nulling current may be modulated to drive the feedback signal to a desired level and is used as a basis for calculating the current to be measured. The current may be measured directly upon calibration of feedback devices coupled to the deflectable member or to the nulling members. Arrays of sensors may be coupled to common busses for applying measured and nulling currents to sensors of the arrays and for detecting feedback signals.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: October 15, 2002
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Jun Jason Yao, Gerard J. Sullivan, Robert J. Anderson
  • Patent number: 6411214
    Abstract: A method is provided for sensing and measuring an electrical current. The current to be measured is applied to a deflectable member in a sensing module in the presence of a magnetic field. Deflection of the member is detected as an indication of the current. A nulling current may be applied to one or more additional deflectable members mechanically linked to the deflectable member. Feedback or readout signals indicative of deflection of the members are monitored. The nulling current is modulated to drive the feedback signals to a desired level. The nulling current value is converted to a value representative of the current to be measured.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: June 25, 2002
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Jun Jason Yao, Gerard J. Sullivan, Robert J. Anderson
  • Publication number: 20020021119
    Abstract: A current sensor includes a deflectable member disposed in a magnetic field. Nulling or compensating members may be mechanically coupled to the deflectable member. Feedback or readout devices coupled to the structure provide signals indicative of deflection of the deflectable member under the influence of applied current and the magnetic field. Nulling current applied to the nulling members tends to oppose deflection of the deflectable member. The nulling current may be modulated to drive the feedback signal to a desired level and is used as a basis for calculating the current to be measured. The current may be measured directly upon calibration of feedback devices coupled to the deflectable member or to the nulling members. Arrays of sensors may be coupled to common busses for applying measured and nulling currents to sensors of the arrays and for detecting feedback signals.
    Type: Application
    Filed: September 18, 2001
    Publication date: February 21, 2002
    Inventors: Jun Jason Yao, Gerard J. Sullivan, Robert J. Anderson
  • Publication number: 20020021122
    Abstract: A current sensor includes a deflectable member disposed in a magnetic field. Nulling or compensating members may be mechanically coupled to the deflectable member, Feedback or readout devices coupled to the structure provide signals indicative of deflection of the deflectable member under the influence of applied current and the magnetic field. Nulling current applied to the nulling members tends to oppose deflection of the deflectable member. The nulling current may be modulated to drive the feedback signal to a desired level and is used as a basis for calculating the current to be measured. The current may be measured directly upon calibration of feedback devices coupled to the deflectable member or to the nulling members. Arrays of sensors may be coupled to common busses for applying measured and nulling currents to sensors of the arrays and for detecting feedback signals.
    Type: Application
    Filed: September 18, 2001
    Publication date: February 21, 2002
    Inventors: Jun Jason Yao, Gerard J. Sullivan, Robert J. Anderson
  • Patent number: 6348788
    Abstract: A current sensor includes a deflectable member disposed in a magnetic field. Nulling or compensating members may be mechanically coupled to the deflectable member. Feedback or readout devices coupled to the structure provide signals indicative of deflection of the deflectable member under the influence of applied current and the magnetic field. Nulling current applied to the nulling members tends to oppose deflection of the deflectable member. The nulling current may be modulated to drive the feedback signal to a desired level and is used as a basis for calculating the current to be measured. The current may be measured directly upon calibration of feedback devices coupled to the deflectable member or to the nulling members. Arrays of sensors may be coupled to common busses for applying measured and nulling currents to sensors of the arrays and for detecting feedback signals.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: February 19, 2002
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Jun Jason Yao, Gerard J. Sullivan, Robert J. Anderson
  • Patent number: 6188322
    Abstract: A method is provided for sensing and measuring an electrical current. The current to be measured is applied to a deflectable member in a sensing module in the presence of a magnetic field. Deflection of the member is detected as an indication of the current. A nulling current may be applied to one or more additional deflectable members mechanically linked to the deflectable member. Feedback or readout signals indicative of deflection of the members are monitored. The nulling current is modulated to drive the feedback signals to a desired level. The nulling current value is converted to a value representative of the current to be measured.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: February 13, 2001
    Assignee: Rockwell Technologies, LLC
    Inventors: Jun Jason Yao, Gerard J. Sullivan, Robert J. Anderson
  • Patent number: 5391257
    Abstract: A method is described for transferring a thin film of arbitrarily large area from an original substrate to an alternate substrate. An etch stop layer is provided below an epitaxial layer, for example, grown on a semiconductor substrate. In a single transfer process, the epitaxial layer is bonded to a rigid host substrate having desirable thermal, electromagnetic, and/or mechanical properties. The original growth substrate is then removed from the transferred epitaxial layer using the etch stop layer. In a double transfer process, the epitaxial layer is first bonded to a rigid and porous temporary substrate using a thermally or chemically releasable resin, for example. The original growth substrate is removed using the etch stop layer so that the original substrate side of the epitaxial layer can be bonded to a rigid host substrate, as described above. The temporary substrate is then removed using the releasable resin to leave the transferred thin film attached to the host substrate.
    Type: Grant
    Filed: December 10, 1993
    Date of Patent: February 21, 1995
    Assignee: Rockwell International Corporation
    Inventors: Gerard J. Sullivan, Mary K. Szwed, Mau-Chung F. Chang
  • Patent number: 5067828
    Abstract: An optical modulator having a waveguide region comprising first and second layers of material having differing effective masses for free charge carriers at a predefined band edge energy disposed immediately adjacent to each other and covered by a lower refractive index cladding. A preferred embodiment employs a semiconductor system such as Al.sub.y Ga.sub.1-y As for the first and second material layers with the value of y adjusted between the layers so that the conduction band edge energies of the direct band in one layer is about the same as that of the indirect condition band in the other layer. A mechanism is provided for moving charge carriers between the first and second layers, such as metal contacts and a power source for applying electrical fields to the waveguide structure in a desired modulation pattern. The material layers may be deposited as a series of quantum wells with limited disordering or a ridge structure used to obtain lateral confinement.
    Type: Grant
    Filed: August 9, 1990
    Date of Patent: November 26, 1991
    Assignee: Rockwell International Corporation
    Inventors: Gerard J. Sullivan, Kenneth D. Pedrotti, Herbert Kroemer