Patents by Inventor Gerardo A. Brucker

Gerardo A. Brucker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160131548
    Abstract: A Long Lifetime Cold Cathode Ionization Vacuum Gauge Design with an extended anode electrode having an axially directed tip, a cathode electrode, and a baffle structure. The axially directed tip of the anode electrode can have a rounded exterior with a diameter at least 10% greater than the diameter of the anode electrode.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 12, 2016
    Inventors: Gerardo A. Brucker, Scott C. Heinbuch
  • Patent number: 9322738
    Abstract: A gas analyzer for a vacuum chamber includes processing electronics configured to receive mass spectral data, receive input of total pressure in the vacuum chamber, receive external input from at least one sensor, and employ the mass spectral data, the total pressure in the vacuum chamber, and the external input from the at least one sensor to calculate a vacuum quality index based on at least one criteria of quality.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: April 26, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Gerardo A. Brucker, Kenneth D. Van Antwerp, Jr.
  • Publication number: 20150300904
    Abstract: An ionization gauge to measure pressure, while controlling the location of deposits resulting from sputtering when operating at high pressure, includes at least one electron source that emits electrons, and an anode that defines an ionization volume. The ionization gauge also includes a collector electrode that collects ions formed by collisions between the electrons and gas molecules and atoms in the ionization volume, to provide a gas pressure output. The electron source can be positioned at an end of the ionization volume, such that the exposure of the electron source to atom flux sputtered off the collector electrode and envelope surface is minimized. Alternatively, the ionization gauge can include a first shade outside of the ionization volume, the first shade being located between the electron source and the collector electrode, and, optionally, a second shade between the envelope and the electron source, such that atoms sputtered off the envelope are inhibited from depositing on the electron source.
    Type: Application
    Filed: February 7, 2013
    Publication date: October 22, 2015
    Inventor: Gerardo A. Brucker
  • Patent number: 9040907
    Abstract: An apparatus includes an electrostatic ion trap and electronics configured to measure parameters of the ion trap and configured to adjust ion trap settings based on the measured parameters. A method of tuning the electrostatic ion trap includes, under automatic electronic control, measuring parameters of the ion trap and adjusting ion trap settings based on the measured parameters.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 26, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Gerardo A. Brucker, G. Jeffery Rathbone, Brian J. Horvath, Timothy C. Swinney, Stephen C. Blouch, Jeffrey G. McCarthy, Timothy R. Piwonka-Corle
  • Publication number: 20150108993
    Abstract: An ionization gauge that measures pressure has an electron source that emits electrons, and an anode that defines an ionization space. The gauge also includes a collector electrode to collect ions formed by an impact between the electrons and a gas and to measure pressure based on the collected ions. The electron source is dynamically varied in emission current between a plurality of emission levels dependent on pressure and a second parameter other than pressure. The ionization gauge may also vary various operating parameters of the gauge components according to parameters stored in a non-volatile memory and selected by a user.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: Larry K. Carmichael, Jesse A. Weber, John H. Henry, Michael N. Schott, Gerardo A. Brucker
  • Publication number: 20150091579
    Abstract: A cold cathode ionization vacuum gauge includes an extended anode electrode and a cathode electrode surrounding the anode electrode along its length and forming a discharge space between the anode electrode and the cathode electrode. The vacuum gauge further includes an electrically conductive guard ring electrode interposed between the cathode electrode and the anode electrode about a base of the anode electrode to collect leakage electrical current, and a discharge starter device disposed over and electrically connected with the guard ring electrode, the starter device having a plurality of tips directed toward the anode and forming a gap between the tips and the anode.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Gerardo A. Brucker, Timothy C. Swinney, Brandon J. Kelly
  • Publication number: 20150091580
    Abstract: A cold cathode ionization vacuum gauge includes an extended anode electrode and a cathode electrode surrounding the anode electrode along its length and forming a discharge space between the anode electrode and the cathode electrode. The vacuum gauge further includes an electrically conductive guard ring electrode interposed between the cathode electrode and the anode electrode about a base of the anode electrode to collect leakage electrical current, and a discharge starter device disposed over and electrically connected with the guard ring electrode, the starter device having a plurality of tips directed toward the anode and forming a gap between the tips and the anode.
    Type: Application
    Filed: November 10, 2014
    Publication date: April 2, 2015
    Inventors: Gerardo A. Brucker, Timothy C. Swinney, Brandon J. Kelly, Alfred A. Funari, Michael N. Schott, Kristian S. Schartau
  • Patent number: 8947098
    Abstract: An ionization gauge that measures pressure has an electron source that emits electrons, and an anode that defines an ionization space. The gauge also includes a collector electrode to collect ions formed by an impact between the electrons and a gas and to measure pressure based on the collected ions. The electron source is dynamically varied in emission current between a plurality of emission levels dependent on pressure and a second parameter other than pressure. The ionization gauge may also vary various operating parameters of the gauge components according to parameters stored in a non-volatile memory and selected by a user.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: February 3, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Larry K. Carmichael, Jesse A. Weber, John H. Henry, Michael N. Schott, Gerardo A. Brucker, Kenneth D. Van Antwerp, Jr.
  • Publication number: 20150028882
    Abstract: A method of detecting specific gas species in an ion trap, the specific gas species initially being a trace component of a first low concentration in the volume of gas, includes ionizing the gas including the specific gas species, thereby creating specific ion species. The method further includes producing an electrostatic potential in which the specific ion species are confined in the ion trap to trajectories. The method also includes exciting confined specific ion species with an AC excitation source having an excitation frequency, scanning the excitation frequency of the AC excitation source to eject the specific ion species from the ion trap, and detecting the ejected specific ion species. The method further includes increasing the concentration of the specific ion species within the ion trap relative to the first low concentration prior to scanning the excitation frequency that ejects the ions of the specific gas species.
    Type: Application
    Filed: March 13, 2013
    Publication date: January 29, 2015
    Inventors: Gerardo A. Brucker, Timothy C. Swinney, G. Jeffery Rathbone
  • Publication number: 20140264068
    Abstract: An apparatus includes an electrostatic ion trap and electronics configured to measure parameters of the ion trap and configured to adjust ion trap settings based on the measured parameters. A method of tuning the electrostatic ion trap includes, under automatic electronic control, measuring parameters of the ion trap and adjusting ion trap settings based on the measured parameters.
    Type: Application
    Filed: October 30, 2012
    Publication date: September 18, 2014
    Inventors: Gerardo A. Brucker, G. Jefferey Rathbone, Brian J. Horvath, Timothy C. Swinney, Stephen C. Blouch, Jeffrey G. McCarthy, Timothy R. Piwonka-Corle
  • Publication number: 20140152320
    Abstract: An ionization gauge to measure pressure and to reduce sputtering yields includes at least one electron source that generates electrons. The ionization gauge also includes a collector electrode that collects ions formed by the collisions between the electrons and gas molecules. The ionization gauge also includes an anode. An anode bias voltage relative to a bias voltage of a collector electrode is configured to switch at a predetermined pressure to decrease a yield of sputtering collisions.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: Brooks Automation, Inc.
    Inventor: Gerardo A. Brucker
  • Patent number: 8686733
    Abstract: An ionization gauge includes an electron generator array that includes a microchannel plate that includes an electron generating portion of the microchannel plate comprising a source for generating seed electrons and an electron multiplier portion of the microchannel plate, responsive to the seed electrons generated by the electron generating portion, that multiplies the electrons. The ionization gauge includes an ionization volume in which the electrons impact a gaseous species, and a collector electrode for collecting ions formed by the impact between the electrons and gas species. The collector electrode can be surrounded by the anode, or the ionization gauge can be formed with multiple collector electrodes. The source of electrons can provide for a spontaneous emission of electrons, where the electrons are multiplied in a cascade.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: April 1, 2014
    Assignee: Brooks Automation, Inc.
    Inventor: Gerardo A. Brucker
  • Patent number: 8648604
    Abstract: An ionization gauge to measure pressure and to reduce sputtering yields includes at least one electron source that generates electrons. The ionization gauge also includes a collector electrode that collects ions formed by the collisions between the electrons and gas molecules. The ionization gauge also includes an anode. An anode bias voltage relative to a bias voltage of a collector electrode is configured to switch at a predetermined pressure to decrease a yield of sputtering collisions.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: February 11, 2014
    Assignee: Brooks Automation, Inc.
    Inventor: Gerardo A. Brucker
  • Patent number: 8586918
    Abstract: An ion trap includes an electrode structure, including a first and a second opposed mirror electrodes and a central lens therebetween, that produces an electrostatic potential in which ions are confined to trajectories at natural oscillation frequencies, the confining potential being anharmonic. The ion trap also includes an AC excitation source having an excitation frequency f that excites confined ions at a frequency of about twice the natural oscillation frequency of the ions, the AC excitation frequency source preferably being connected to the central lens. In one embodiment, the ion trap includes a scan control that mass selectively reduces a frequency difference between the AC excitation frequency and about twice the natural oscillation frequency of the ions.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: November 19, 2013
    Assignee: Brooks Automation, Inc.
    Inventors: Gerardo A. Brucker, Kenneth D. Van Antwerp, G. Jeffery Rathbone, Scott C. Heinbuch, Michael N. Schott, Barbara Jane Hinch, Alexei V. Ermakov
  • Publication number: 20120227465
    Abstract: A gas analyzer for a vacuum chamber includes processing electronics configured to receive mass spectral data, receive input of total pressure in the vacuum chamber, receive external input from at least one sensor, and employ the mass spectral data, the total pressure in the vacuum chamber, and the external input from the at least one sensor to calculate a vacuum quality index based on at least one criteria of quality.
    Type: Application
    Filed: November 8, 2010
    Publication date: September 13, 2012
    Inventors: Gerardo A. Brucker, Kenneth D. Van Antwerp, JR.
  • Publication number: 20120112056
    Abstract: An ion trap includes an electrode structure, including a first and a second opposed mirror electrodes and a central lens therebetween, that produces an electrostatic potential in which ions are confined to trajectories at natural oscillation frequencies, the confining potential being anharmonic. The ion trap also includes an AC excitation source having an excitation frequency f that excites confined ions at a frequency of about twice the natural oscillation frequency of the ions, the AC excitation frequency source preferably being connected to the central lens. In one embodiment, the ion trap includes a scan control that mass selectively reduces a frequency difference between the AC excitation frequency and about twice the natural oscillation frequency of the ions.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 10, 2012
    Inventors: Gerardo A. Brucker, Kenneth D. Van Antwerp, G. Jeffrey Rathbone, Scott C. Heinbuch, Michael N. Schott
  • Publication number: 20110234233
    Abstract: An ionization gauge includes an electron generator array that includes a microchannel plate that includes an electron generating portion of the microchannel plate comprising a source for generating seed electrons and an electron multiplier portion of the microchannel plate, responsive to the seed electrons generated by the electron generating portion, that multiplies the electrons. The ionization gauge includes an ionization volume in which the electrons impact a gaseous species, and a collector electrode for collecting ions formed by the impact between the electrons and gas species. The collector electrode can be surrounded by the anode, or the ionization gauge can be formed with multiple collector electrodes. The source of electrons can provide for a spontaneous emission of electrons, where the electrons are multiplied in a cascade.
    Type: Application
    Filed: December 17, 2008
    Publication date: September 29, 2011
    Inventor: Gerardo A. Brucker
  • Publication number: 20110163754
    Abstract: An ionization gauge that measures pressure has an electron source that emits electrons, and an anode that defines an ionization space. The gauge also includes a collector electrode to collect ions formed by an impact between the electrons and a gas and to measure pressure based on the collected ions. The electron source is dynamically varied in emission current between a plurality of emission levels dependent on pressure and a second parameter other than pressure. The ionization gauge may also vary various operating parameters of the gauge components according to parameters stored in a non-volatile memory and selected by a user.
    Type: Application
    Filed: March 18, 2011
    Publication date: July 7, 2011
    Applicant: Brooks Automation, Inc.
    Inventors: Larry K. Carmichael, Jesse A. Weber, John H. Henry, Michael N. Schott, Gerardo A. Brucker, Kenneth D. Van Antwerp, JR.
  • Publication number: 20110062961
    Abstract: An ionization gauge to measure pressure and to reduce sputtering yields includes at least one electron source that generates electrons. The ionization gauge also includes a collector electrode that collects ions formed by the collisions between the electrons and gas molecules. The ionization gauge also includes an anode. An anode bias voltage relative to a bias voltage of a collector electrode is configured to switch at a predetermined pressure to decrease a yield of sputtering collisions.
    Type: Application
    Filed: August 20, 2010
    Publication date: March 17, 2011
    Applicant: Brooks Automation, Inc..
    Inventor: Gerardo A. Brucker
  • Patent number: 7768267
    Abstract: An ionization gauge that eliminates a hot cathode or filament, but maintains a level of precision of gas density measurements approaching that of a hot cathode ionization gauge. The ionization gauge includes a collector electrode disposed in an ionization volume, an electron source without a heated cathode, and an electrostatic shutter that regulates the flow of electrons between the electron source and the ionization volume. The electrostatic shutter controls the flow of electrons based on feedback from an anode defining the ionization volume. The electron source can be a Penning or glow discharge ionization gauge.
    Type: Grant
    Filed: July 11, 2007
    Date of Patent: August 3, 2010
    Assignee: Brooks Automation, Inc.
    Inventors: Richard A. Knott, Gerardo A. Brucker, Paul C. Arnold