Patents by Inventor Gerbrand Ceder

Gerbrand Ceder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060083990
    Abstract: The invention provides an electrochemical cell which includes a first electrode and a second electrode which is a counter electrode to said first electrode, and an electrolyte material interposed there between. The first electrode includes an alkali metal phosphorous compound doped with an element having a valence state greater than that of the alkali metal.
    Type: Application
    Filed: December 1, 2005
    Publication date: April 20, 2006
    Inventors: George Adamson, Jeremy Barker, Gerbrand Ceder, Ming Dong, Dane Morgan, M. Saidi
  • Patent number: 7026071
    Abstract: Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0° C. to about 70° C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of LixMyNzO2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the MyNz portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: April 11, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Gerbrand Ceder, Yet-Ming Chiang, Donald R. Sadoway, Mehmet K. Aydinol, Philip P. Soo, Young-Il Jang, Biying Huang
  • Publication number: 20060074594
    Abstract: Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data comprises measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.
    Type: Application
    Filed: May 4, 2005
    Publication date: April 6, 2006
    Applicant: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Chris Fischer, Kevin Tibbetts, Dane Morgan, Stefano Curtarolo
  • Publication number: 20050197862
    Abstract: Prediction methods including statistical and artificial intelligence methods to predict the prescribing behavior and characteristics and size of patient populations under the care of health care providers from limited data, based on processes developed on integrated medical and pharmaceutical claims data. Prescribers can be classified into groups and subgroups, and marketing recommendations can be made to organizations with interest in the drug prescriptions based on prescription data; sales force effectiveness and marketing message effectiveness products can also be developed.
    Type: Application
    Filed: January 28, 2005
    Publication date: September 8, 2005
    Applicant: PharMetrics, Inc.
    Inventors: Daniel Paterson, Dane Morgan, Gerbrand Ceder, Stan Norton
  • Publication number: 20050181280
    Abstract: Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0° C. to about 70° C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of LixMyNzO2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the MyNz portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries.
    Type: Application
    Filed: April 8, 2005
    Publication date: August 18, 2005
    Applicant: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Yet-Ming Chiang, Donald Sadoway, Mehmet Aydinol, Young-Il Jang, Biying Huang
  • Publication number: 20050175529
    Abstract: Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0° C. to about 70° C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of LixMyNzO2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the MyNz portion of the compound is (4?x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries.
    Type: Application
    Filed: April 8, 2005
    Publication date: August 11, 2005
    Applicant: Massachusetts Institute of Technology
    Inventors: Gerbrand Ceder, Yet-Ming Chiang, Donald Sadoway, Mehmet Aydinol, Young-Il Jang, Biying Huang
  • Publication number: 20040258984
    Abstract: A solid-state battery including at least one thin film layer, and method for making same.
    Type: Application
    Filed: April 13, 2004
    Publication date: December 23, 2004
    Applicant: Massachusetts Institute of Technology
    Inventors: Nava Ariel, Eugene A. Fitzgerald, Donald R. Sadoway, Gerbrand Ceder
  • Publication number: 20040131939
    Abstract: The invention provides an electrochemical cell which includes a first electrode and a second electrode which is a counter electrode to said first electrode, and an electrolyte material interposed there between. The first electrode includes an alkali metal phosphorous compound doped with an element having a valence state greater than that of the alkali metal.
    Type: Application
    Filed: December 19, 2003
    Publication date: July 8, 2004
    Inventors: George W. Adamson, Jeremy Barker, Gerbrand Ceder, Ming Dong, Dane Morgan, M. Yazid Saidi
  • Patent number: 6599662
    Abstract: This invention provides a composite material for use as an electrode in electrochemical devices. An electroactive composite material includes a first electroactive metal, the electroactive material including a phase enriched in a metal or metal alloy, MeI, capable of intercalating or alloying with a species selected from the group consisting of alkali metals and hydrogen, and a second material having the first active material intimately mixed therein. The second material includes a metal oxide, MeyIIOz, wherein the metals MeI have a less negative Gibbs free energy for alloying or compound formation with oxygen than the metals that comprise MeIIO. The materials of the invention comprise a first material that is an elemental metal, metal alloy, metal oxide, or other metal compound, selected so that it is able to alloy with lithium, and prepared in a dispersed one-, two- or three-dimensional form.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: July 29, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Gerbrand Ceder, Pimpa Limthongkul
  • Publication number: 20020048706
    Abstract: Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0° C. to about 70° C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of LixMyNzO2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the MyNz portion of the compound is (4-x).
    Type: Application
    Filed: May 22, 2001
    Publication date: April 25, 2002
    Inventors: Anne M. Mayes, Gerbrand Ceder, Yet-Ming Chiang, Donald R. Sadoway, Mehmet K. Aydinol, Philip P. Soo, Young-Il Jang, Biying Huang