Patents by Inventor Ghavam G. Shahidi

Ghavam G. Shahidi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9466651
    Abstract: High resolution active matrix structures are fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed using a semiconductor-on-insulator substrate. The substrate is thinned using a layer transfer technique or chemical/mechanical processing. Driver transistors are formed on the semiconductor layer of the substrate along with additional circuits that provide other functions such as computing or sensing. Contacts to passive devices such as organic light emitting diodes may be provided by heavily doped regions formed in the handle layer of the substrate and then isolated. A gate dielectric layer may be formed on the semiconductor layer, which functions as a channel layer, or the insulator layer of the substrate may be employed as a gate dielectric layer.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: October 11, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Stephen W. Bedell, III, Bahman Hekmatshoartabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9461169
    Abstract: A device and method for inducing stress in a semiconductor layer includes providing a substrate having a dielectric layer formed between a first semiconductor layer and a second semiconductor layer and processing the second semiconductor layer to form an amorphized material. A stress layer is deposited on the first semiconductor layer. The wafer is annealed to memorize stress in the second semiconductor layer by recrystallizing the amorphized material.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 4, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni, Ghavam G. Shahidi
  • Publication number: 20160284926
    Abstract: A photovoltaic device that includes an upper cell that absorbs a first range of wavelengths of light and a bottom cell that absorbs a second range of wavelengths of light. The bottom cell includes a heterojunction comprising a crystalline germanium containing (Ge) layer. At least one surface of the crystalline germanium (Ge) containing layer is in contact with a silicon (Si) containing layer having a larger band gap than the crystalline (Ge) containing layer.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: Keith E. Fogel, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Publication number: 20160284916
    Abstract: A photovoltaic device including a single junction solar cell provided by an absorption layer of a type IV semiconductor material having a first conductivity, and an emitter layer of a type III-V semiconductor material having a second conductivity, wherein the type III-V semiconductor material has a thickness that is no greater than 50 nm.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9455250
    Abstract: An electrical device including a plurality of fin structures. The plurality of fin structures including at least one decoupling fin and at least one semiconductor fin. The electrical device includes at least one semiconductor device including a channel region present in the at least one semiconductor fin, a gate structure present on the channel region of the at least one semiconductor fin, and source and drain regions present on source and drain region portion of the at least one semiconductor fin. The electrical device includes at least one decoupling capacitor including the decoupling fin structure as a first electrode of the decoupling capacitor, a node dielectric layer and a second electrode provided by the metal contact to the source and drain regions of the semiconductor fin structures. The decoupling capacitor is present underlying the power line to the semiconductor fin structures.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: September 27, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ali Khakifirooz, Darsen D. Lu, Ghavam G. Shahidi
  • Publication number: 20160268475
    Abstract: A method and structure for integrating gallium nitride into a semiconductor substrate. The method may also include means for isolating the gallium nitride from the semiconductor substrate.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 15, 2016
    Inventors: William J. Gallagher, Effendi Leobandung, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20160254262
    Abstract: Closely spaced III-V compound semiconductor fins and germanium-containing semiconductor fins are provided by utilizing mandrel structures for III-V compound semiconductor material epitaxial growth and subsequent fin formation. Mandrel structures are formed on a semiconductor material stack that includes an uppermost layer of a relaxed germanium-containing material layer. A hard mask portion is formed on a pFET device region of the semiconductor material stack, and then recessed regions are provided in the relaxed germanium-containing material layer of the material stack semiconductor and in an nFET device region. An III-V compound semiconductor material plug is then formed in each recessed region. First sacrificial spacers are formed adjacent the sidewalls of each mandrel structures, and then each mandrel structure is removed. III-V compound semiconductor fins and germanium-containing semiconductor fins are then formed in the different device regions utilizing each first sacrificial spacer as an etch mask.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek, Ghavam G. Shahidi
  • Patent number: 9425080
    Abstract: Semiconductor nanoparticles are deposited on a top surface of a first insulator layer of a substrate. A second insulator layer is deposited over the semiconductor nanoparticles and the first insulator layer. A semiconductor layer is then bonded to the second insulator layer to provide a semiconductor-on-insulator substrate, which includes a buried insulator layer including the first and second insulator layers and embedded semiconductor nanoparticles therein. Back gate electrodes are formed underneath the buried insulator layer, and shallow trench isolation structures are formed to isolate the back gate electrodes. Field effect transistors are formed in a memory device region and a logic device region employing same processing steps. The embedded nanoparticles can be employed as a charge storage element of non-volatile memory devices, in which charge carriers tunnel through the second insulator layer into or out of the semiconductor nanoparticles during writing and erasing.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: August 23, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Robert H. Dennard, Hemanth Jagannathan, Ali Khakifirooz, Tak H. Ning, Ghavam G. Shahidi
  • Patent number: 9421087
    Abstract: High resolution active matrix nanowire circuits enable a flexible platform for artificial electronic skin having pressure sensing capability. Comb-like interdigitated nanostructures extending vertically from a pair of opposing, flexible assemblies facilitate pressure sensing via changes in resistance caused by varying the extent of contact among the interdigitated nanostructures. Electrically isolated arrays of vertically extending, electrically conductive nanowires or nanofins are formed from a doped, electrically conductive layer, each of the arrays being electrically connected to a transistor in an array of transistors. The nanowires or nanofins are interdigitated with further electrically conductive nanowires or nanofins mounted to a flexible handle.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: August 23, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9406717
    Abstract: A method for forming a back-illuminated image sensor includes forming a higher doped crystalline layer on a crystalline substrate, growing a lower doped crystalline layer on the higher doped crystalline layer and forming a photodiode and component circuitry from the lower doped crystalline layer. Metallization structures are formed to make connections to and between components. The crystalline substrate is removed to expose the higher doped crystalline layer. An optical component structure is provided on an exposed surface of the higher doped crystalline layer to receive light therein such that the higher doped crystalline layer provides a passivation layer for the photodiode and the component circuitry.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: August 2, 2016
    Assignee: GlobalFoundries, Inc.
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9397246
    Abstract: A method for fabricating a device with integrated photovoltaic cells includes supporting a semiconductor substrate on a first handle substrate and doping the semiconductor substrate to form doped alternating regions with opposite conductivity. A doped layer is formed over a first side the semiconductor substrate. A conductive material is patterned over the doped layer to form conductive islands such that the conductive islands are aligned with the alternating regions to define a plurality of photovoltaic cells connected in series on a monolithic structure.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: July 19, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9397118
    Abstract: An ambipolar electronic device is disclosed. The device may include a field-effect transistor (FET), which may have a handle substrate layer, two contacts and an inorganic crystalline layer between the handle substrate layer and the contacts. The inorganic crystalline layer may have a doped channel region between the contacts. The FET may also have a dielectric layer between the contacts, attached to the inorganic crystalline layer, and a gate layer, attached to the dielectric layer. The FET may conduct current, in response to a first gate voltage applied to the gate layer, using electrons as a majority carrier, along the length of the channel region between the contacts. The FET may also conduct current, in response to a second gate voltage applied to the gate layer, using holes as a majority carrier, along the length of the channel region between the contacts.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Patent number: 9391180
    Abstract: Heterojunction bipolar transistors are provided that include at least one contact (e.g., collector, emitter, and/or base) formed by a heterojunction between a crystalline semiconductor material and a doped non-crystalline semiconductor material layer. An interfacial intrinsic non-crystalline semiconductor material layer is present at the heterojunction between the crystalline semiconductor material and the doped non-crystalline semiconductor material layer. The presence of the interfacial intrinsic non-crystalline semiconductor material layer improves the surface passivation of the crystalline semiconductor material by reducing the interface defect density at the heterojunction.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: July 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Bahman Hekmatshoar-Tabari, Tak H. Ning, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9391094
    Abstract: An ambipolar electronic device is disclosed. The device may include a field-effect transistor (FET), which may have a handle substrate layer, two contacts and an inorganic crystalline layer between the handle substrate layer and the contacts. The inorganic crystalline layer may have a doped channel region between the contacts. The FET may also have a dielectric layer between the contacts, attached to the inorganic crystalline layer, and a gate layer, attached to the dielectric layer. The FET may conduct current, in response to a first gate voltage applied to the gate layer, using electrons as a majority carrier, along the length of the channel region between the contacts. The FET may also conduct current, in response to a second gate voltage applied to the gate layer, using holes as a majority carrier, along the length of the channel region between the contacts.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: July 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoartabari, Ghavam G. Shahidi
  • Publication number: 20160187288
    Abstract: A semiconductor structure capable of real-time spatial sensing of nanoparticles within a nanofluid is provided. The structure includes an array of gate structures. An interlevel dielectric material surrounds the array of gate structures. A vertical inlet channel is located within a portion of the interlevel dielectric material and on one side of the array of gate structures. A vertical outlet channel is located within another portion of the interlevel dielectric material and on another side of the array of gate structures. A horizontal channel that functions as a back gate is in fluid communication with the vertical inlet and outlet channels, and is located beneath the array of gate structures. A back gate dielectric material portion lines exposed surfaces within the vertical inlet channel, the vertical outlet channel and the horizontal channel.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: Kangguo Cheng, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9373743
    Abstract: A photovoltaic device including a single junction solar cell provided by an absorption layer of a type IV semiconductor material having a first conductivity, and an emitter layer of a type III-V semiconductor material having a second conductivity, wherein the type III-V semiconductor material has a thickness that is no greater than 50 nm.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: June 21, 2016
    Assignee: International Business Machines Corporation
    Inventors: Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9373691
    Abstract: A method for forming a semiconductor device includes forming a dielectric layer on a first substrate and wafer bonding the dielectric layer of the first substrate to a second substrate including SiC with a passivating layer formed on the SiC. A portion of the first substrate is removed from a side opposite the dielectric layer. The dielectric layer is patterned to form a gate dielectric for a field effect transistor formed on the second substrate.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: June 21, 2016
    Assignee: GlobalFoundries, Inc.
    Inventors: Bahman Hekmatshoartabari, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9373741
    Abstract: A photovoltaic device that includes an upper cell that absorbs a first range of wavelengths of light and a bottom cell that absorbs a second range of wavelengths of light. The bottom cell includes a heterojunction comprising a crystalline germanium containing (Ge) layer. At least one surface of the crystalline germanium (Ge) containing layer is in contact with a silicon (Si) containing layer having a larger band gap than the crystalline (Ge) containing layer.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: June 21, 2016
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Bahman Hekmatshoartabari, Devendra K. Sadana, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9368420
    Abstract: Fabrication methods are disclosed that facilitate the production of electronic structures that are both flexible and stretchable to conform to non-planar (e.g. curved) surfaces without suffering functional damage due to excessive strain. Electronic structures including CMOS devices are provided that can be stretched or squeezed within acceptable limits without failing or breaking. The methods disclosed herein further facilitate the production of flexible, stretchable electronic structures having multiple levels of intra-chip connectors. Such connectors are formed through deposition and photolithographic patterning (back end of the line processing) and can be released following transfer of the electronic structures to flexible substrates.
    Type: Grant
    Filed: June 6, 2015
    Date of Patent: June 14, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Stephen W. Bedell, Wilfried E. Haensch, Bahman Hekmatshoartabari, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9356019
    Abstract: An electrical circuit, planar diode, and method of forming a diode and one or more CMOS devices on the same chip. The method includes electrically isolating a portion of a substrate in a diode region from other substrate regions. The method also includes recessing the substrate in the diode region. The method further includes epitaxially forming in the diode region a first doped layer above the substrate and epitaxially forming in the diode region a second doped layer above the first doped layer.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: May 31, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kangguo Cheng, Ali Khakifirooz, Pranita Kerber, Ghavam G. Shahidi