Patents by Inventor Ghulam ALI

Ghulam ALI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091953
    Abstract: A method for controlling a robotic system includes determining a location and/or a pose of a power system component based on data received from one or more sensors, and determining a mapping of a location of a robotic system within a model of an external environment of the robotic system based on the data. The model of the external environment provides locations of objects external to the robotic system. A sequence of movements of components of the robotic system is determined to perform maintenance on the power system component based on the locations of the objects external to the robotic system and/or the location or pose of the power system component. One or more control signals are communicated to remotely control movement of the components of the robotic system based on the sequence or movements of the components to perform maintenance on the power system component.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 11927969
    Abstract: A system includes a robotic vehicle having a propulsion and a manipulator configured to perform designated tasks. The system also including a local controller disposed onboard the robotic vehicle and configured to receive input signals from an off-board controller. Responsive to receiving an input signal for moving in an autonomous mode, the local controller is configured to move the robotic vehicle toward one of the different final destinations by autonomously and iteratively determining a series of waypoints until the robotic vehicle has reached the one final destination. For each iteration, the local controller is configured to determine a next waypoint between a current location of the robotic vehicle and the final destination, determine movement limitations of the robotic vehicle, and generate control signals in accordance with the movement limitations.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: March 12, 2024
    Assignee: Transportation IP Holdings, LLC
    Inventors: Ghulam Ali Baloch, Huan Tan, Balajee Kannan, Charles Theurer
  • Patent number: 11865732
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: January 9, 2024
    Assignee: Transportation IP Holdings, LLC
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 11315062
    Abstract: The present approach relates to an automated approach for verifying sufficiency of and/or quality of a service operation performed on an asset by a field engineer. In one implementation the approach employs autonomous tests and/or compares performance of the serviced asset with that of comparable peers operating in similar or co-local environments.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 26, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Ghulam Ali Baloch
  • Publication number: 20210252712
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 11020859
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 1, 2021
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 10937150
    Abstract: A method and system, the method including receiving semantic descriptions of features of an asset extracted from a first set of images; receiving a model of the asset, the model constructed based on a second set of a plurality images of the asset; receiving, based on an optical flow-based motion estimation, an indication of a motion for the features in the first set of images; determining a set of candidate regions of interest for the asset; determining a region of interest in the first set of images; iteratively determining a matching of features in the set of candidate regions of interest and the determined region of interest in the first set of images to generate a record of matches in features between two images in the first set of images; and displaying a visualization of the matches in features between two images in the first set of images.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: March 2, 2021
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Huan Tan, Arpit Jain, Gyeong Woo Cheon, Ghulam Ali Baloch, Jilin Tu, Weina Ge, Li Zhang
  • Publication number: 20200348686
    Abstract: A system includes a robotic vehicle having a propulsion and a manipulator configured to perform designated tasks. The system also including a local controller disposed onboard the robotic vehicle and configured to receive input signals from an off-board controller. Responsive to receiving an input signal for moving in an autonomous mode, the local controller is configured to move the robotic vehicle toward one of the different final destinations by autonomously and iteratively determining a series of waypoints until the robotic vehicle has reached the one final destination. For each iteration, the local controller is configured to determine a next waypoint between a current location of the robotic vehicle and the final destination, determine movement limitations of the robotic vehicle, and generate control signals in accordance with the movement limitations.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Inventors: Ghulam Ali Baloch, Huan Tan, Balajee Kannan, Charles Theurer
  • Patent number: 10818922
    Abstract: An anode active material for a sodium ion secondary battery, a sodium ion secondary battery including an anode active material, and an electric device including the sodium ion secondary battery are disclosed. The anode active material for a sodium ion secondary battery includes a cobalt tin spinel oxide represented by Co2.4Sn0.6O4. The sodium ion secondary battery includes an anode made of an anode active material composed of a cobalt tin spinel oxide represented by Chemical Formula 1 below: Co2+xSn1-xO4,??Chemical Formula 1 where x is a real number satisfying 0?x?0.9; an electrolyte; and a cathode. The sodium ion secondary battery has high capacity characteristics. The electric device including the sodium ion secondary battery includes an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and an electric power storage system.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: October 27, 2020
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyung Yoon Chung, Hun-Gi Jung, Ji-Young Kim, Ghulam Ali, Mobinul Islam, Sang Ok Kim, Hyungseok Kim
  • Patent number: 10800039
    Abstract: The example embodiments are directed to a system and method for controlling and commanding an unmanned robot using natural interfaces. In one example, the method includes receiving a plurality of sensory inputs from a user via one or more natural interfaces, wherein each sensory input is associated with an intention of the user for an unmanned robot to perform a task, processing each of the plurality of sensory inputs using a plurality of channels of processing to produce a first recognition result and a second recognition result, combining the first recognition result and the second recognition result to determine a recognized command, and generating a task plan assignable to the unmanned robot based on the recognized command and predefined control primitives.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: October 13, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Huan Tan, Ghulam Ali Baloch, Yang Zhao, Mauricio Castillo-Effen
  • Patent number: 10777004
    Abstract: Provided are systems and methods for generating an autonomous 3D inspection plan for an unmanned robot. In an example, the method may include receiving a selection of a plurality of regions of interest with respect to a virtual asset displayed in virtual space, detecting a 3D position of the regions of interest within a coordinate frame of the virtual space, auto-generating a travel path about a physical asset corresponding to the virtual asset by generating a virtual 3D travel path with respect to the virtual asset based on the detected 3D positions of the selected regions of interest within the coordinate frame, aligning the virtual 3D travel path in the virtual space with a physical travel path in a physical space, and outputting a robotic inspection plan comprising the auto-generated physical travel path for the unmanned robot.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: September 15, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Steven Gray, Shiraj Sen, Ghulam Ali Baloch, Mauricio Castillo-Effen, Charles Theurer
  • Patent number: 10682677
    Abstract: A three-dimensional model data store may contain a three-dimensional model of an industrial asset, including points of interest associated with the industrial asset. An inspection plan data store may contain an inspection plan for the industrial asset, including a path of movement for an autonomous inspection robot. An industrial asset inspection platform may receive sensor data from an autonomous inspection robot indicating characteristics of the industrial asset and determine a current location of the autonomous inspection robot along the path of movement in the inspection plan along with current context information. A forward simulation of movement for the autonomous inspection robot may be executed from the current location, through a pre-determined time window, to determine a difference between the path of movement in the inspection plan and the forward simulation of movement along with future context information.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: June 16, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Shiraj Sen, Steven Gray, Nicholas Abate, Roberto Silva Filho, Ching-Ling Huang, Mauricio Castillo-Effen, Ghulam Ali Baloch, Raju Venkataramana, Douglas Forman
  • Patent number: 10633093
    Abstract: Provided are systems and methods for monitoring an asset via an autonomous model-driven inspection. In an example, the method may include storing an inspection plan including a virtually created three-dimensional (3D) model of a travel path with respect to a virtual asset that is created in virtual space, converting the virtually created 3D model of the travel path about the virtual asset into a physical travel path about a physical asset corresponding to the virtual asset, autonomously controlling vertical and lateral movement of the unmanned robot in three dimensions with respect to the physical asset based on the physical travel path and capturing data at one or more regions of interest, and capturing data at one or more regions of interest, and storing information concerning the captured data about the asset.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: April 28, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Mauricio Castillo-Effen, Ching-Ling Huang, Raju Venkataramana, Roberto Silva Filho, Alex Tepper, Steven Gray, Yakov Polishchuk, Viktor Holovashchenko, Charles Theurer, Yang Zhao, Ghulam Ali Baloch, Douglas Forman, Shiraj Sen, Huan Tan, Arpit Jain
  • Publication number: 20200082623
    Abstract: Provided are systems and methods for generating an autonomous 3D inspection plan for an unmanned robot. In an example, the method may include receiving a selection of a plurality of regions of interest with respect to a virtual asset displayed in virtual space, detecting a 3D position of the regions of interest within a coordinate frame of the virtual space, auto-generating a travel path about a physical asset corresponding to the virtual asset by generating a virtual 3D travel path with respect to the virtual asset based on the detected 3D positions of the selected regions of interest within the coordinate frame, aligning the virtual 3D travel path in the virtual space with a physical travel path in a physical space, and outputting a robotic inspection plan comprising the auto-generated physical travel path for the unmanned robot.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Steven Gray, Shiraj Sen, Ghulam Ali Baloch, Mauricio Castillo-Effen, Charles Theurer
  • Patent number: 10552134
    Abstract: A method of searching for and installing a software product on a device is provided. One or more capabilities needed by the device to be served by a software product are determined. The one or more capabilities needed by the device are communicated from a software life cycle management agent on the device to a yellow pages agent outside the device, the communicating comprising formulating a request comprising a list of the capabilities encoded in a description language that defines the capabilities semantically. Then locations of one or more software products matching the one or more capabilities needed by the device may be received from the yellow pages agent. One of the one or more software products to install may be selected based on automatically evaluated criteria. Then the selected software product may be downloaded using its received location, and the selected software product may be installed on the device.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: February 4, 2020
    Assignee: GENERAL ELECTRIC COMPAY
    Inventors: Ghulam Ali Baloch, Bradford Wayne Miller, Chung Hee Hwang, Viktor Holovashchenko
  • Publication number: 20200005444
    Abstract: A method and system, the method including receiving semantic descriptions of features of an asset extracted from a first set of images; receiving a model of the asset, the model constructed based on a second set of a plurality images of the asset; receiving, based on an optical flow-based motion estimation, an indication of a motion for the features in the first set of images; determining a set of candidate regions of interest for the asset; determining a region of interest in the first set of images; iteratively determining a matching of features in the set of candidate regions of interest and the determined region of interest in the first set of images to generate a record of matches in features between two images in the first set of images; and displaying a visualization of the matches in features between two images in the first set of images.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Huan TAN, Arpit JAIN, Gyeong Woo CHEON, Ghulam Ali BALOCH, Jilin TU, Weina GE, Li ZHANG
  • Patent number: 10521960
    Abstract: Provided are systems and methods for generating an autonomous 3D inspection plan for an unmanned robot. In an example, the method may include receiving a selection of a plurality of regions of interest with respect to a virtual asset displayed in virtual space, detecting a 3D position of the regions of interest within a coordinate frame of the virtual space, auto-generating a travel path about a physical asset corresponding to the virtual asset by generating a virtual 3D travel path with respect to the virtual asset based on the detected 3D positions of the selected regions of interest within the coordinate frame, aligning the virtual 3D travel path in the virtual space with a physical travel path in a physical space, and outputting a robotic inspection plan comprising the auto-generated physical travel path for the unmanned robot.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: December 31, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Steven Gray, Shiraj Sen, Ghulam Ali Baloch, Mauricio Castillo-Effen, Charles Theurer
  • Patent number: 10452078
    Abstract: Provided are systems and methods for autonomous robotic localization. In one example, the method includes receiving ranging measurements from a plurality of fixed anchor nodes that each have a fixed position and height with respect to the asset, receiving another ranging measurement from an aerial anchor node attached to an unmanned robot having a dynamically adjustable position and height different than the fixed position and height of each of the plurality of anchor nodes, and determining a location of the autonomous robot with respect to the asset based on the ranging measurements received from the fixed anchor nodes and the aerial anchor node, and autonomously moving the autonomous robot about the asset based on the determined location.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: October 22, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Yang Zhao, Mauricio Castillo-Effen, Ghulam Ali Baloch, Huan Tan, Douglas Forman
  • Publication number: 20190319265
    Abstract: The present disclosure relates to an anode active material for a sodium ion secondary battery, a method for preparing the same, and a sodium ion secondary battery including the same. More particularly, the anode active material for a sodium ion secondary battery includes a cobalt tin spinel oxide obtained by a simple precipitation process, and can be applied to a sodium ion secondary battery having high capacity characteristics.
    Type: Application
    Filed: February 6, 2019
    Publication date: October 17, 2019
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyung Yoon CHUNG, Hun-Gi JUNG, Ji-Young KIM, Ghulam ALI, Mobinul ISLAM, Sang Ok KIM, Hyungseok KIM
  • Patent number: 10403886
    Abstract: Disclosed is an anode material for a sodium secondary battery. The anode material includes a tin fluoride-carbon composite composed of a tin fluoride and a carbonaceous material. The anode material can be used to improve the charge/discharge capacity, charge/discharge efficiency, and electrochemical activity of a sodium secondary battery. Also provided are a method for preparing the anode material and a sodium secondary battery including the anode material.
    Type: Grant
    Filed: January 2, 2017
    Date of Patent: September 3, 2019
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyung Yoon Chung, Ji-Hoon Lee, Ghulam Ali, Hun-Gi Jung, Wonchang Choi, Won Young Chang, Si Hyoung Oh, Byung Won Cho