Patents by Inventor Ghulam ALI

Ghulam ALI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190224849
    Abstract: The example embodiments are directed to a system and method for controlling and commanding an unmanned robot using natural interfaces. In one example, the method includes receiving a plurality of sensory inputs from a user via one or more natural interfaces, wherein each sensory input is associated with an intention of the user for an unmanned robot to perform a task, processing each of the plurality of sensory inputs using a plurality of channels of processing to produce a first recognition result and a second recognition result, combining the first recognition result and the second recognition result to determine a recognized command, and generating a task plan assignable to the unmanned robot based on the recognized command and predefined control primitives.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 25, 2019
    Inventors: Huan TAN, Ghulam Ali BALOCH, Yang ZHAO, Mauricio CASTILLO-EFFEN
  • Publication number: 20190134821
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 9, 2019
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Publication number: 20180329433
    Abstract: Provided are systems and methods for autonomous robotic localization. In one example, the method includes receiving ranging measurements from a plurality of fixed anchor nodes that each have a fixed position and height with respect to the asset, receiving another ranging measurement from an aerial anchor node attached to an unmanned robot having a dynamically adjustable position and height different than the fixed position and height of each of the plurality of anchor nodes, and determining a location of the autonomous robot with respect to the asset based on the ranging measurements received from the fixed anchor nodes and the aerial anchor node, and autonomously moving the autonomous robot about the asset based on the determined location.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 15, 2018
    Inventors: Yang ZHAO, Mauricio CASTILLO-EFFEN, Ghulam Ali BALOCH, Huan TAN, Douglas FORMAN
  • Publication number: 20180330027
    Abstract: A three-dimensional model data store may contain a three-dimensional model of an industrial asset, including points of interest associated with the industrial asset. An inspection plan data store may contain an inspection plan for the industrial asset, including a path of movement for an autonomous inspection robot. An industrial asset inspection platform may receive sensor data from an autonomous inspection robot indicating characteristics of the industrial asset and determine a current location of the autonomous inspection robot along the path of movement in the inspection plan along with current context information. A forward simulation of movement for the autonomous inspection robot may be executed from the current location, through a pre-determined time window, to determine a difference between the path of movement in the inspection plan and the forward simulation of movement along with future context information.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 15, 2018
    Inventors: Shiraj SEN, Steven GRAY, Nicholas ABATE, Roberto SILVA FILHO, Ching-Ling HUANG, Mauricio CASTILLO-EFFEN, Ghulam Ali BALOCH, Raju VENKATARAMANA, Douglas FORMAN
  • Publication number: 20180321692
    Abstract: Provided are systems and methods for monitoring an asset via an autonomous model-driven inspection. In an example, the method may include storing an inspection plan including a virtually created three-dimensional (3D) model of a travel path with respect to a virtual asset that is created in virtual space, converting the virtually created 3D model of the travel path about the virtual asset into a physical travel path about a physical asset corresponding to the virtual asset, autonomously controlling vertical and lateral movement of the unmanned robot in three dimensions with respect to the physical asset based on the physical travel path and capturing data at one or more regions of interest, and capturing data at one or more regions of interest, and storing information concerning the captured data about the asset.
    Type: Application
    Filed: May 5, 2017
    Publication date: November 8, 2018
    Inventors: Mauricio CASTILLO-EFFEN, Ching-Ling HUANG, Raju VENKATARAMANA, Roberto SILVA FILHO, Alex TEPPER, Steven GRAY, Yakov POLISHCHUK, Viktor HOLOVASHCHENKO, Charles THEURER, Yang ZHAO, Ghulam Ali BALOCH, Douglas FORMAN, Shiraj SEN, Huan TAN, Arpit JAIN
  • Publication number: 20180322699
    Abstract: Provided are systems and methods for generating an autonomous 3D inspection plan for an unmanned robot. In an example, the method may include receiving a selection of a plurality of regions of interest with respect to a virtual asset displayed in virtual space, detecting a 3D position of the regions of interest within a coordinate frame of the virtual space, auto-generating a travel path about a physical asset corresponding to the virtual asset by generating a virtual 3D travel path with respect to the virtual asset based on the detected 3D positions of the selected regions of interest within the coordinate frame, aligning the virtual 3D travel path in the virtual space with a physical travel path in a physical space, and outputting a robotic inspection plan comprising the auto-generated physical travel path for the unmanned robot.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 8, 2018
    Inventors: Steven GRAY, Shiraj SEN, Ghulam Ali BALOCH, Mauricio CASTILLO-EFFEN, Charles THEURER
  • Publication number: 20180082239
    Abstract: The present approach relates to an automated approach for verifying sufficiency of and/or quality of a service operation performed on an asset by a field engineer. In one implementation the approach employs autonomous tests and/or compares performance of the serviced asset with that of comparable peers operating in similar or co-local environments.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 22, 2018
    Inventor: Ghulam Ali Baloch
  • Publication number: 20180034044
    Abstract: Disclosed is an anode material for a sodium secondary battery. The anode material includes a tin fluoride-carbon composite composed of a tin fluoride and a carbonaceous material. The anode material can be used to improve the charge/discharge capacity, charge/discharge efficiency, and electrochemical activity of a sodium secondary battery. Also provided are a method for preparing the anode material and a sodium secondary battery including the anode material.
    Type: Application
    Filed: January 2, 2017
    Publication date: February 1, 2018
    Inventors: Kyung Yoon CHUNG, Ji-Hoon LEE, Ghulam ALI, Hun-Gi JUNG, Wonchang CHOI, Won Young CHANG, Si Hyoung OH, Byung Won CHO
  • Publication number: 20170341236
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Application
    Filed: October 13, 2016
    Publication date: November 30, 2017
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wheeler
  • Publication number: 20170341235
    Abstract: A robotic system includes a robotic vehicle having a propulsion system, one or more sensors that image data representative of an external environment, and a controller that determines a waypoint for the robotic vehicle to move toward. The controller determines limitations on movement of the robotic vehicle toward a waypoint. The limitations are based on the image data. The controller controls the propulsion system to move the robotic vehicle to the waypoint subject to the limitations on the movement to avoid colliding with one or more objects. The controller determines one or more additional waypoints subsequent to the robotic vehicle reaching the waypoint, determines one or more additional limitations on the movement of the robotic vehicle toward each of the respective additional waypoints, and control the propulsion system of the robotic vehicle to sequentially move the robotic vehicle to the one or more additional waypoints.
    Type: Application
    Filed: September 30, 2016
    Publication date: November 30, 2017
    Inventors: Ghulam Ali Baloch, Huan Tan, Balajee Kannan, Charles Theurer
  • Publication number: 20160253163
    Abstract: A method of searching for and installing a software product on a device is provided. One or more capabilities needed by the device to be served by a software product are determined. The one or more capabilities needed by the device are communicated from a software life cycle management agent on the device to a yellow pages agent outside the device, the communicating comprising formulating a request comprising a list of the capabilities encoded in a description language that defines the capabilities semantically. Then locations of one or more software products matching the one or more capabilities needed by the device may be received from the yellow pages agent. One of the one or more software products to install may be selected based on automatically evaluated criteria. Then the selected software product may be downloaded using its received location, and the selected software product may be installed on the device.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Ghulam Ali Baloch, Bradford Wayne Miller, Chung Hee Hwang, Viktor Holovashchenko
  • Patent number: 9348571
    Abstract: A method of searching for and installing a software product on a device is provided. One or more capabilities needed by the device to be served by a software product are determined. The one or more capabilities needed by the device are communicated from a software life cycle management agent on the device to a yellow pages agent outside the device, the communicating comprising formulating a request comprising a list of the capabilities encoded in a description language that defines the capabilities semantically. Then locations of one or more software products matching the one or more capabilities needed by the device may be received from the yellow pages agent. One of the one or more software products to install may be selected based on automatically evaluated criteria. Then the selected software product may be downloaded using its received location, and the selected software product may be installed on the device.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: May 24, 2016
    Assignee: General Electric Company
    Inventors: Ghulam Ali Baloch, Bradford Wayne Miller, Chung Hee Hwang, Viktor Holovashchenko
  • Publication number: 20160055072
    Abstract: A method of searching for and installing a software product on a device is provided. One or more capabilities needed by the device to be served by a software product are determined. The one or more capabilities needed by the device are communicated from a software life cycle management agent on the device to a yellow pages agent outside the device, the communicating comprising formulating a request comprising a list of the capabilities encoded in a description language that defines the capabilities semantically. Then locations of one or more software products matching the one or more capabilities needed by the device may be received from the yellow pages agent. One of the one or more software products to install may be selected based on automatically evaluated criteria. Then the selected software product may be downloaded using its received location, and the selected software product may be installed on the device.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 25, 2016
    Inventors: Ghulam Ali Baloch, Bradford Wayne Miller, Chung Hee Hwang, Viktor Holovashchenko
  • Publication number: 20160055077
    Abstract: A method of testing a software product is performed. The software product is downloaded to a sandbox located on a device, the sandbox constructed so that actions taken by software inside the sandbox do not affect operations of modules on the device located outside of the sandbox. Information about the software product is obtained. Then one or more test libraries are automatically generated, based on the information, each of the test libraries containing one or more executable functions to test the software product. Then the software product is tested in the sandbox using the one or more test libraries and test data, producing test results, wherein the testing includes obtaining information from one or more components of the device outside of the sandbox. Based at least on the test results, it is determined that the software product should be installed fully on the device.
    Type: Application
    Filed: August 25, 2014
    Publication date: February 25, 2016
    Inventors: Ghulam Ali Baloch, Bradford Wayne Miller, Chung Hee Hwang