Patents by Inventor Giovanni Leo

Giovanni Leo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240269483
    Abstract: The present invention relates to a heart tissue ablation device comprising a charged particle emitting system 1, a control system 2 for instructing the accelerator and beamline when to create the beam and what its required properties should be, a patient positioning and verification system, an ultrasound cardiac imaging system 3 performed on the patient, able to track the target movement, a computer program to determine and record the safe motion margins, the treatment plans for one or more motion phases and a computer program to regulate the control system 2 to load the correct irradiation plan according to the motion phase and if the position of the target is inside of the position margin, the irradiation is enabled and if the position of the target is outside of the position margin, the irradiation is disabled.
    Type: Application
    Filed: April 5, 2024
    Publication date: August 15, 2024
    Applicant: EBAMed SA
    Inventors: Adriano GARONNA, Giovanni LEO
  • Patent number: 11998404
    Abstract: An apparatus and method for diagnosis or treatment of a vessel or organ. The apparatus includes a deformable body such as a catheter having a tissue ablation end effector and an irrigation channel in fluid communication therewith. At least two sensors are disposed within a distal extremity of the deformable body, the sensors being responsive to a wave in a specified range of frequency to detect deformations resulting from a contact force applied to the distal extremity. A microprocessor can be operatively coupled with the sensors to receive outputs therefrom, the microprocessor being configured to resolve a multi-dimensional force vector corresponding to the contact force. In one embodiment, the sensors are fiber Bragg grating sensors, and the wave is injected into the fiber Bragg grating strain sensors from a laser diode.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: June 4, 2024
    Assignee: St. Jude Medical International Holding S.À R.L.
    Inventors: Giovanni Leo, Nicolas Aeby, Daniele Inaudi
  • Patent number: 11998310
    Abstract: A medical device, system, and method having a flexible shaft and a multi-core fiber within the flexible shaft. The multi-core fiber includes a plurality of optical cores dedicated for shape sensing sensors, and a plurality of optical cores dedicated for force sensing sensors. A medical device flexing structure assembly can comprise a multi-core fiber comprising a plurality of cores, and a flexing structure comprising at least one slot. Each of the plurality of cores can comprise a fiber Bragg grating, and the flexing structure can be configured to bend in response to a force imparted on the flexing structure.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: June 4, 2024
    Assignee: St. Jude Medical International Holding S.à r.l.
    Inventors: Yu Liu, John W. Sliwa, Jiayin Liu, Giovanni Leo, Troy T. Tegg
  • Patent number: 11951327
    Abstract: The present invention relates to a heart tissue ablation device comprising a charged particle emitting system 1, a control system 2 for instructing the accelerator and beamline when to create the beam and what its required properties should be, a patient positioning and verification system, an ultrasound cardiac imaging system 3 performed on the patient, able to track the target movement, a computer program to determine and record the safe motion margins, the treatment plans for one or more motion phases and a computer program to regulate the control system 2 to load the correct irradiation plan according to the motion phase and if the position of the target is inside of the position margin, the irradiation is enabled and if the position of the target is outside of the position margin, the irradiation is disabled.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: April 9, 2024
    Assignee: EBAMed SA
    Inventors: Adriano Garonna, Giovanni Leo
  • Patent number: 11883131
    Abstract: A fiber optic force sensing assembly for detecting forces imparted at a distal end of a catheter assembly. The structural member may include segments adjacent each other in a serial arrangement, with gaps located between adjacent segments that are bridged by flexures. Fiber optics are coupled to the structural member. In one embodiment, each fiber optic has a distal end disposed adjacent one of the gaps and oriented for emission of light onto and for collection of light reflected from a segment adjacent the gap. The optical fibers cooperate with the deformable structure to provide a change in the intensity of the reflected light, or alternatively to provide a variable gap interferometer for sensing deformation of the structural member. In another embodiment, the gaps are bridged by fiber Bragg gratings that reflect light back through the fiber optic at central wavelengths that vary with the strain imposed on the grating.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: January 30, 2024
    Assignee: St. Jude Medical International Holding S.à r.l.
    Inventors: Nicolas Aeby, Giovanni Leo
  • Publication number: 20230200736
    Abstract: An ablation catheter system configured with a compact force sensor at a distal end for detection of contact forces exerted on an end effector. The force sensor includes fiber optics operatively coupled with reflecting members on a structural member. In one embodiment, the optical fibers and reflecting members cooperate with the deformable structure to provide a variable gap interferometer for sensing deformation of the structural member due to contact force. In another embodiment, a change in the intensity of the reflected light is detected to measure the deformation. The measured deformations are then used to compute a contact force vector. In some embodiments, the force sensor is configured to passively compensate for temperature changes that otherwise lead to erroneous force indications. In other embodiments, the system actively compensates for errant force indications caused by temperature changes by measuring certain local temperatures of the structural member.
    Type: Application
    Filed: December 22, 2022
    Publication date: June 29, 2023
    Inventors: Giovanni Leo, Nicolas Aeby, Stuart J. Olstad, Axel Bertholds, Pere Llosas
  • Publication number: 20230031938
    Abstract: A medical device, system, and method having a flexible shaft and a multi-core fiber within the flexible shaft. The multi-core fiber includes a plurality of optical cores dedicated for shape sensing sensors, and a plurality of optical cores dedicated for force sensing sensors. A medical device flexing structure assembly can comprise a multi-core fiber comprising a plurality of cores, and a flexing structure comprising at least one slot. Each of the plurality of cores can comprise a fiber Bragg grating, and the flexing structure can be configured to bend in response to a force imparted on the flexing structure.
    Type: Application
    Filed: August 11, 2022
    Publication date: February 2, 2023
    Inventors: YU Liu, John W. Sliwa, Jiayin Liu, Giovanni Leo, Troy T. Tegg
  • Patent number: 11564628
    Abstract: An ablation catheter system configured with a compact force sensor at a distal end for detection of contact forces exerted on an end effector. The force sensor includes fiber optics operatively coupled with reflecting members on a structural member. In one embodiment, the optical fibers and reflecting members cooperate with the deformable structure to provide a variable gap interferometer for sensing deformation of the structural member due to contact force. In another embodiment, a change in the intensity of the reflected light is detected to measure the deformation. The measured deformations are then used to compute a contact force vector. In some embodiments, the force sensor is configured to passively compensate for temperature changes that otherwise lead to erroneous force indications. In other embodiments, the system actively compensates for errant force indications caused by temperature changes by measuring certain local temperatures of the structural member.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: January 31, 2023
    Assignee: St. Jude Medical International Holding S.à r.l.
    Inventors: Giovanni Leo, Nicolas Aeby, Stuart J. Olstad, Axel Bertholds, Pere Llosas
  • Patent number: 11504183
    Abstract: A method and apparatus that utilizes a force-time integral for real time estimation of steam pop in catheter-based ablation systems. The apparatus measures the force exerted by a contact ablation probe on a target tissue and an energization parameter delivered to the ablation probe. The exerted force and energization parameter can be utilized to provide an estimation of the probability of steam pop. In one embodiment, the force and energization metrics can be used as feedback to establish a desired contact force and energization level combination to prevent steam popping.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: November 22, 2022
    Assignee: St. Jude Medical International Holdings S.A R. L.
    Inventors: Giovanni Leo, Hendrik Lambert
  • Publication number: 20220305288
    Abstract: The present invention relates to a heart tissue ablation device comprising a charged particle emitting system 1, a control system 2 for instructing the accelerator and beamline when to create the beam and what its required properties should be, a patient positioning and verification system, an ultrasound cardiac imaging system 3 performed on the patient, able to track the target movement, a computer program to determine and record the safe motion margins, the treatment plans for one or more motion phases and a computer program to regulate the control system 2 to load the correct irradiation plan according to the motion phase and if the position of the target is inside of the position margin, the irradiation is enabled and if the position of the target is outside of the position margin, the irradiation is disabled.
    Type: Application
    Filed: April 11, 2022
    Publication date: September 29, 2022
    Inventors: Adriano GARONNA, Giovanni LEO
  • Patent number: 11445937
    Abstract: A medical device, system, and method having a flexible shaft and a multi-core fiber within the flexible shaft. The multi-core fiber includes a plurality of optical cores dedicated for shape sensing sensors, and a plurality of optical cores dedicated for force sensing sensors. A medical device flexing structure assembly can comprise a multi-core fiber comprising a plurality of cores, and a flexing structure comprising at least one slot. Each of the plurality of cores can comprise a fiber Bragg grating, and the flexing structure can be configured to bend in response to a force imparted on the flexing structure.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: September 20, 2022
    Assignee: St. Jude Medical International Holding S.À R.L.
    Inventors: Yu Liu, John W. Sliwa, Jiayin Liu, Giovanni Leo, Troy T. Tegg
  • Patent number: 11298565
    Abstract: The present invention relates to a heart tissue ablation device comprising a charged particle emitting system 1, a control system 2 for instructing the accelerator and beamline when to create the beam and what its required properties should be, a patient positioning and verification system, an ultrasound cardiac imaging system 3 performed on the patient, able to track the target movement, a computer program to determine and record the safe motion margins, the treatment plans for one or more motion phases and a computer program to regulate the control system 2 to load the correct irradiation plan according to the motion phase and if the position of the target is inside of the position margin, the irradiation is enabled and if the position of the target is outside of the position margin, the irradiation is disabled.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: April 12, 2022
    Assignee: EBAMed SA
    Inventors: Adriano Garonna, Giovanni Leo
  • Patent number: 11154364
    Abstract: A roll-sensing sensor assembly comprises an elongate body defining a first axis. A plurality of electrodes can be disposed about the first axis. A coil can extend along and be disposed about a second axis. In some embodiments, a canting plane of a loop in the coil is nonzero relative to a line perpendicular to and extending from the first axis.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: October 26, 2021
    Assignee: St. Jude Medical Ineternational Holding S.à r.l.
    Inventor: Giovanni Leo
  • Publication number: 20210282893
    Abstract: An apparatus and method for diagnosis or treatment of a vessel or organ. The apparatus includes a deformable body such as a catheter having a tissue ablation end effector and an irrigation channel in fluid communication therewith. At least two sensors are disposed within a distal extremity of the deformable body, the sensors being responsive to a wave in a specified range of frequency to detect deformations resulting from a contact force applied to the distal extremity. A microprocessor can be operatively coupled with the sensors to receive outputs therefrom, the microprocessor being configured to resolve a multi-dimensional force vector corresponding to the contact force. In one embodiment, the sensors are fiber Bragg grating sensors, and the wave is injected into the fiber Bragg grating strain sensors from a laser diode.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 16, 2021
    Inventors: Giovanni Leo, Nicolas Aeby, Daniele Inaudi
  • Publication number: 20210138198
    Abstract: An elongated surgical manipulator apparatus and method of operating enables determination of the shape of a flexible portion of the elongated surgical manipulator and/or the location of an arbitrary point thereon, as well as a measure of a contact force exerted on a distal portion of the manipulator. A plurality of fiber optics are operatively coupled with the manipulator, each of the fiber optics including a plurality of fiber Bragg gratings for determination of the shape and/or position. Each of the fiber optics further includes a fiber optic strain gauge such as a Bragg grating or a Fabry-Perot resonator at a distal portion of the elongated surgical manipulator that is isolated from the strain associated with the bending of the manipulator. The fiber optic strain gauges at the distal portion may thus be used to detect a force vector (magnitude and direction) imposed on the distal portion.
    Type: Application
    Filed: January 22, 2021
    Publication date: May 13, 2021
    Inventor: Giovanni Leo
  • Patent number: 10973606
    Abstract: An apparatus and method for diagnosis or treatment of a vessel or organ. The apparatus includes a deformable body such as a catheter having a tissue ablation end effector and an irrigation channel in fluid communication therewith. At least two sensors are disposed within a distal extremity of the deformable body, the sensors being responsive to a wave in a specified range of frequency to detect deformations resulting from a contact force applied to the distal extremity. A microprocessor can be operatively coupled with the sensors to receive outputs therefrom, the microprocessor being configured to resolve a multi-dimensional force vector corresponding to the contact force. In one embodiment, the sensors are fiber Bragg grating sensors, and the wave is injected into the fiber Bragg grating strain sensors from a laser diode.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: April 13, 2021
    Assignee: ST. JUDE MEDICAL INTERNATIONAL HOLDING S.À R.L.
    Inventors: Giovanni Leo, Nicolas Aeby, Daniele Inaudi
  • Patent number: 10905855
    Abstract: An elongated surgical manipulator apparatus and method of operating enables determination of the shape of a flexible portion of the elongated surgical manipulator and/or the location of an arbitrary point thereon, as well as a measure of a contact force exerted on a distal portion of the manipulator. A plurality of fiber optics are operatively coupled with the manipulator, each of the fiber optics including a plurality of fiber Bragg gratings for determination of the shape and/or position. Each of the fiber optics further includes a fiber optic strain gauge such as a Bragg grating or a Fabry-Perot resonator at a distal portion of the elongated surgical manipulator that is isolated from the strain associated with the bending of the manipulator. The fiber optic strain gauges at the distal portion may thus be used to detect a force vector (magnitude and direction) imposed on the distal portion.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: February 2, 2021
    Assignee: St. Jude Medical International Holding S.ár.l.
    Inventor: Giovanni Leo
  • Publication number: 20200346034
    Abstract: The present invention relates to a heart tissue ablation device comprising a charged particle emitting system 1, a control system 2 for instructing the accelerator and beamline when to create the beam and what its required properties should be, a patient positioning and verification system, an ultrasound cardiac imaging system 3 performed on the patient, able to track the target movement, a computer program to determine and record the safe motion margins, the treatment plans for one or more motion phases and a computer program to regulate the control system 2 to load the correct irradiation plan according to the motion phase and if the position of the target is inside of the position margin, the irradiation is enabled and if the position of the target is outside of the position margin, the irradiation is disabled.
    Type: Application
    Filed: November 15, 2018
    Publication date: November 5, 2020
    Inventors: Adriano GARONNA, Giovanni LEO
  • Publication number: 20200214634
    Abstract: An ablation catheter system configured with a compact force sensor at a distal end for detection of contact forces exerted on an end effector. The force sensor includes fiber optics operatively coupled with reflecting members on a structural member. In one embodiment, the optical fibers and reflecting members cooperate with the deformable structure to provide a variable gap interferometer for sensing deformation of the structural member due to contact force. In another embodiment, a change in the intensity of the reflected light is detected to measure the deformation. The measured deformations are then used to compute a contact force vector. In some embodiments, the force sensor is configured to passively compensate for temperature changes that otherwise lead to erroneous force indications. In other embodiments, the system actively compensates for errant force indications caused by temperature changes by measuring certain local temperatures of the structural member.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 9, 2020
    Inventors: Giovanni Leo, Nicolas Aeby, Stuart J. Olstad, Axel Bertholds, Pere Llosas
  • Publication number: 20200171272
    Abstract: A fiber optic force sensing assembly for detecting forces imparted at a distal end of a catheter assembly. The structural member may include segments adjacent each other in a serial arrangement, with gaps located between adjacent segments that are bridged by flexures. Fiber optics are coupled to the structural member. In one embodiment, each fiber optic has a distal end disposed adjacent one of the gaps and oriented for emission of light onto and for collection of light reflected from a segment adjacent the gap. The optical fibers cooperate with the deformable structure to provide a change in the intensity of the reflected light, or alternatively to provide a variable gap interferometer for sensing deformation of the structural member. In another embodiment, the gaps are bridged by fiber Bragg gratings that reflect light back through the fiber optic at central wavelengths that vary with the strain imposed on the grating.
    Type: Application
    Filed: February 4, 2020
    Publication date: June 4, 2020
    Inventors: Nicolas Aeby, Giovanni Leo