Patents by Inventor Giovanni Leo

Giovanni Leo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190110835
    Abstract: A method and apparatus that utilizes a force-time integral for real time estimation of steam pop in catheter-based ablation systems. The apparatus measures the force exerted by a contact ablation probe on a target tissue and an energization parameter delivered to the ablation probe. The exerted force and energization parameter can be utilized to provide an estimation of the probability of steam pop. In one embodiment, the force and energization metrics can be used as feedback to establish a desired contact force and energization level combination to prevent steam popping.
    Type: Application
    Filed: November 13, 2018
    Publication date: April 18, 2019
    Inventors: Giovanni Leo, Hendrik Lambert
  • Patent number: 10159528
    Abstract: A method and apparatus that utilizes a force-time integral for real time estimation of steam pop in catheter-based ablation systems. The apparatus measures the force exerted by a contact ablation probe on a target tissue and an energization parameter delivered to the ablation probe. The exerted force and energization parameter can be utilized to provide an estimation of the probability of steam pop. In one embodiment, the force and energization metrics can be used as feedback to establish a desired contact force and energization level combination to prevent steam popping.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: December 25, 2018
    Assignee: ST JUDE MEDICAL INTERNATIONAL HOLDING S.À R.L.
    Inventors: Giovanni Leo, Hendrik Lambert
  • Publication number: 20180339134
    Abstract: An elongated surgical manipulator apparatus and method of operating enables determination of the shape of a flexible portion of the elongated surgical manipulator and/or the location of an arbitrary point thereon, as well as a measure of a contact force exerted on a distal portion of the manipulator. A plurality of fiber optics are operatively coupled with the manipulator, each of the fiber optics including a plurality of fiber Bragg gratings for determination of the shape and/or position. Each of the fiber optics further includes a fiber optic strain gauge such as a Bragg grating or a Fabry-Perot resonator at a distal portion of the elongated surgical manipulator that is isolated from the strain associated with the bending of the manipulator. The fiber optic strain gauges at the distal portion may thus be used to detect a force vector (magnitude and direction) imposed on the distal portion.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 29, 2018
    Inventor: Giovanni Leo
  • Patent number: 10111607
    Abstract: A method and apparatus that utilizes a force-time integral for real time estimation of lesion size in catheter-based ablation systems. The apparatus measures the force exerted by a contact ablation probe on a target tissue and integrates the force over an energization time of the ablation probe. The force-time integral can be calculated and utilized to provide an estimated lesion size (depth, volume and/or area) in real time. The force-time integral may also account for variations in the power delivered to the target tissue in real time to provide an improved estimation of the lesion size. In one embodiment, the force metric can be used as feedback to establish a desired power level delivered to the probe to prevent steam popping.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: October 30, 2018
    Assignee: ST JUDE MEDICAL INTERNATIONAL HOLDING S.À R.L.
    Inventors: Giovanni Leo, Dipen Shah, Hendrik Lambert
  • Publication number: 20180214215
    Abstract: A roll-sensing sensor assembly comprises an elongate body defining a first axis. A plurality of electrodes can be disposed about the first axis. A coil can extend along and be disposed about a second axis. In some embodiments, a canting plane of a loop in the coil is nonzero relative to a line perpendicular to and extending from the first axis.
    Type: Application
    Filed: July 29, 2016
    Publication date: August 2, 2018
    Inventor: Giovanni Leo
  • Publication number: 20180206937
    Abstract: An apparatus and method for diagnosis or treatment of a vessel or organ. The apparatus includes a deformable body such as a catheter having a tissue ablation end effector and an irrigation channel in fluid communication therewith. At least two sensors are disposed within a distal extremity of the deformable body, the sensors being responsive to a wave in a specified range of frequency to detect deformations resulting from a contact force applied to the distal extremity. A microprocessor can be operatively coupled with the sensors to receive outputs therefrom, the microprocessor being configured to resolve a multi-dimensional force vector corresponding to the contact force. In one embodiment, the sensors are fiber Bragg grating sensors, and the wave is injected into the fiber Bragg grating strain sensors from a laser diode.
    Type: Application
    Filed: January 17, 2018
    Publication date: July 26, 2018
    Inventors: Giovanni Leo, Nicolas Aeby, Daniele Inaudi
  • Patent number: 9993617
    Abstract: An elongated surgical manipulator apparatus and method of operating enables determination of the shape of a flexible portion of the elongated surgical manipulator and/or the location of an arbitrary point thereon, as well as a measure of a contact force exerted on a distal portion of the manipulator. A plurality of fiber optics are operatively coupled with the manipulator, each of the fiber optics including a plurality of fiber Bragg gratings for determination of the shape and/or position. Each of the fiber optics further includes a fiber optic strain gauge such as a Bragg grating or a Fabry-Perot resonator at a distal portion of the elongated surgical manipulator that is isolated from the strain associated with the bending of the manipulator. The fiber optic strain gauges at the distal portion may thus be used to detect a force vector (magnitude and direction) imposed on the distal portion.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: June 12, 2018
    Assignee: St. Jude Medical International Holdings S.À R.L.
    Inventor: Giovanni Leo
  • Patent number: 9907618
    Abstract: An apparatus and method for diagnosis or treatment of a vessel or organ. The apparatus includes a deformable body such as a catheter having a tissue ablation end effector and an irrigation channel in fluid communication therewith. At least two sensors are disposed within a distal extremity of the deformable body, the sensors being responsive to a wave in a specified range of frequency to detect deformations resulting from a contact force applied to the distal extremity. A microprocessor can be operatively coupled with the sensors to receive outputs therefrom, the microprocessor being configured to resolve a multi-dimensional force vector corresponding to the contact force. In one embodiment, the sensors are fiber Bragg grating sensors, and the wave is injected into the fiber Bragg grating strain sensors from a laser diode.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: March 6, 2018
    Assignee: ST JUDE MEDICAL INTERNATIONAL HOLDING S.À R.L.
    Inventors: Giovanni Leo, Nicolas Aeby, Daniele Inaudi
  • Publication number: 20170209667
    Abstract: A fiber optic force sensing assembly for detecting forces imparted at a distal end of a catheter assembly. The structural member may include segments adjacent each other in a serial arrangement, with gaps located between adjacent segments that are bridged by flexures. Fiber optics are coupled to the structural member. In one embodiment, each fiber optic has a distal end disposed adjacent one of the gaps and oriented for emission of light onto and for collection of light reflected from a segment adjacent the gap. The optical fibers cooperate with the deformable structure to provide a change in the intensity of the reflected light, or alternatively to provide a variable gap interferometer for sensing deformation of the structural member. In another embodiment, the gaps are bridged by fiber Bragg gratings that reflect light back through the fiber optic at central wavelengths that vary with the strain imposed on the grating.
    Type: Application
    Filed: February 6, 2017
    Publication date: July 27, 2017
    Inventors: Nicolas Aeby, Giovanni Leo
  • Publication number: 20170196479
    Abstract: A medical device, system, and method having a flexible shaft and a multi-core fiber within the flexible shaft. The multi-core fiber includes a plurality of optical cores dedicated for shape sensing sensors, and a plurality of optical cores dedicated for force sensing sensors. A medical device flexing structure assembly can comprise a multi-core fiber comprising a plurality of cores, and a flexing structure comprising at least one slot. Each of the plurality of cores can comprise a fiber Bragg grating, and the flexing structure can be configured to bend in response to a force imparted on the flexing structure.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 13, 2017
    Inventors: Yu Liu, John W. Sliwa, Jiayin Liu, Giovanni Leo, Troy T. Tegg
  • Patent number: 9597036
    Abstract: A fiber optic force sensing assembly for detecting forces imparted at a distal end of a catheter assembly. The structural member may include segments adjacent each other in a serial arrangement, with gaps located between adjacent segments that are bridged by flexures. Fiber optics are coupled to the structural member. In one embodiment, each fiber optic has a distal end disposed adjacent one of the gaps and oriented for emission of light onto and for collection of light reflected from a segment adjacent the gap. The optical fibers cooperate with the deformable structure to provide a change in the intensity of the reflected light, or alternatively to provide a variable gap interferometer for sensing deformation of the structural member. In another embodiment, the gaps are bridged by fiber Bragg gratings that reflect light back through the fiber optic at central wavelengths that vary with the strain imposed on the grating.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 21, 2017
    Assignee: St. Jude Medical International Holding S.à r.l.
    Inventors: Nicolas Aeby, Giovanni Leo
  • Publication number: 20170007323
    Abstract: A method and apparatus that utilizes a force-time integral for real time estimation of steam pop in catheter-based ablation systems. The apparatus measures the force exerted by a contact ablation probe on a target tissue and an energization parameter delivered to the ablation probe. The exerted force and energization parameter can be utilized to provide an estimation of the probability of steam pop. In one embodiment, the force and energization metrics can be used as feedback to establish a desired contact force and energization level combination to prevent steam popping.
    Type: Application
    Filed: July 14, 2016
    Publication date: January 12, 2017
    Inventors: Giovanni Leo, Dipen Shah, Hendrik Lambert
  • Publication number: 20160213282
    Abstract: A method and apparatus that utilizes a force-time integral for real time estimation of lesion size in catheter-based ablation systems. The apparatus measures the force exerted by a contact ablation probe on a target tissue and integrates the force over an energization time of the ablation probe. The force-time integral can be calculated and utilized to provide an estimated lesion size (depth, volume and/or area) in real time. The force-time integral may also account for variations in the power delivered to the target tissue in real time to provide an improved estimation of the lesion size. In one embodiment, the force metric can be used as feedback to establish a desired power level delivered to the probe to prevent steam popping.
    Type: Application
    Filed: December 22, 2015
    Publication date: July 28, 2016
    Inventors: Giovanni Leo, Dipen Shah, Hendrik Lambert
  • Patent number: 9393068
    Abstract: A method and apparatus that utilizes a force-time integral for real time estimation of steam pop in catheter-based ablation systems. The apparatus measures the force exerted by a contact ablation probe on a target tissue and an energization parameter delivered to the ablation probe. The exerted force and energization parameter can be utilized to provide an estimation of the probability of steam pop. In one embodiment, the force and energization metrics can be used as feedback to establish a desired contact force and energization level combination to prevent steam popping.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: July 19, 2016
    Assignee: ST. JUDE MEDICAL INTERNATIONAL HOLDING S.À R.L.
    Inventors: Giovanni Leo, Hendrik Lambert
  • Publication number: 20160128768
    Abstract: An irrigated finned ablation head that provides enhanced cooling. The irrigated finned ablation head comprises a plurality of radial fins that are distributed about a central axis and that extend axially from a common base. The plurality of fins are arranged to define a central passageway along the central axis, as well as a plurality of slots therebetween, the slots extending in an axial direction along the irrigated finned ablation head. In one embodiment, the central passageway extends through the irrigated finned ablation head, defining an opening at the distal extremity, with the slots extending from the base to the opening. In another embodiment, the irrigated finned ablation head includes a cap portion at a distal portion that is common to all the radial fins, so that the slots are terminated at the distal portion of the irrigated finned ablation head. The radial flow distribution along the central axis can be tailored by the configuration of the central passageway.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 12, 2016
    Inventors: Giovanni Leo, Nicolas Aeby
  • Patent number: 9237920
    Abstract: A method and apparatus that utilizes a force-time integral for real time estimation of lesion size in catheter-based ablation systems. The apparatus measures the force exerted by a contact ablation probe on a target tissue and integrates the force over an energization time of the ablation probe. The force-time integral can be calculated and utilized to provide an estimated lesion size (depth, volume and/or area) in real time. The force-time integral may also account for variations in the power delivered to the target tissue in real time to provide an improved estimation of the lesion size. In one embodiment, the force metric can be used as feedback to establish a desired power level delivered to the probe to prevent steam popping.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: January 19, 2016
    Assignee: St. Jude Medical Luxembourg Holding S.À.R.L.
    Inventors: Giovanni Leo, Dipen Shah, Hendrik Lambert
  • Patent number: 9179968
    Abstract: An irrigated finned ablation head that provides enhanced cooling. The irrigated finned ablation head comprises a plurality of radial fins that are distributed about a central axis and that extend axially from a common base. The plurality of fins are arranged to define a central passageway along the central axis, as well as a plurality of slots therebetween, the slots extending in an axial direction along the irrigated finned ablation head. In one embodiment, the central passageway extends through the irrigated finned ablation head, defining an opening at the distal extremity, with the slots extending from the base to the opening. In another embodiment, the irrigated finned ablation head includes a cap portion at a distal portion that is common to all the radial fins, so that the slots are terminated at the distal portion of the irrigated finned ablation head. The radial flow distribution along the central axis can be tailored by the configuration of the central passageway.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: November 10, 2015
    Assignee: ST. JUDE MEDICAL LUXEMBOURG HOLDING S.À.R.L.
    Inventors: Giovanni Leo, Nicolas Aeby
  • Publication number: 20150216612
    Abstract: An apparatus and method for diagnosis or treatment of a vessel or organ. The apparatus includes a deformable body such as a catheter having a tissue ablation end effector and an irrigation channel in fluid communication therewith. At least two sensors are disposed within a distal extremity of the deformable body, the sensors being responsive to a wave in a specified range of frequency to detect deformations resulting from a contact force applied to the distal extremity. A microprocessor can be operatively coupled with the sensors to receive outputs therefrom, the microprocessor being configured to resolve a multi-dimensional force vector corresponding to the contact force. In one embodiment, the sensors are fiber Bragg grating sensors, and the wave is injected into the fiber Bragg grating strain sensors from a laser diode.
    Type: Application
    Filed: December 17, 2014
    Publication date: August 6, 2015
    Inventors: Giovanni Leo, Nicolas Aeby, Daniele Inaudi
  • Patent number: 8961436
    Abstract: Apparatus is provided for diagnosing or treating an organ or vessel, wherein a device having at least two optical fiber sensors disposed in a distal extremity thereof is coupled to processing logic programmed to compute a multi-dimensional force vector responsive to detected changes in the optical characteristics of the optical fiber sensors arising from deflection of the distal extremity resulting from contact with the tissue of the wall of the organ or vessel. The force vector may be used to facilitate manipulation of the catheter either directly or automatically using a robotic system.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: February 24, 2015
    Assignee: St. Jude Medical Luxembourg Holding S.á.r.l.
    Inventors: Giovanni Leo, Nicolas Aeby, Daniele Inaudi
  • Patent number: 8932288
    Abstract: An apparatus and method for diagnosis or treatment of a vessel or organ. The apparatus includes a deformable body such as a catheter having a tissue ablation end effector and an irrigation channel in fluid communication therewith. At least two sensors are disposed within a distal extremity of the deformable body, the sensors being responsive to a wave in a specified range of frequency to detect deformations resulting from a contact force applied to the distal extremity. A microprocessor can be operatively coupled with the sensors to receive outputs therefrom, the microprocessor being configured to resolve a multi-dimensional force vector corresponding to the contact force. In one embodiment, the sensors are fiber Bragg grating sensors, and the wave is injected into the fiber Bragg grating strain sensors from a laser diode.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: January 13, 2015
    Assignee: Endosense SA
    Inventors: Giovanni Leo, Nicolas Aeby, Daniele Inaudi