Patents by Inventor Gjalt W. Huisman

Gjalt W. Huisman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7132267
    Abstract: The present invention provides methods and compositions for preparing 4-substituted 3-hydroxybutyric acid derivatives by halohydrin dehalogenase-catalyzed conversion of 4-halo-3-hydroxybutyric acid derivatives. The present invention further provides methods and compositions for preparing 4-halo-3-hydroxybutyric acid derivatives by ketoreductase-catalyzed conversion of 4-halo-3-ketobutyric acid derivatives The present invention also provides methods and compositions for preparing vicinal cyano, hydroxyl substituted carboxylic acid esters.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: November 7, 2006
    Assignee: Codexis, Inc.
    Inventors: S. Christopher Davis, John H. Grate, David R. Gray, John M. Gruber, Gjalt W. Huisman, Steven K. Ma, Lisa M. Newman, Roger Sheldon, Li A Wang
  • Patent number: 7125693
    Abstract: The present invention provides methods and compositions for preparing 4-substituted 3-hydroxybutyric acid derivatives by halohydrin dehalogenase-catalyzed conversion of 4-halo-3-hydroxybutyric acid derivatives. The present invention further provides methods and compositions for preparing 4-halo-3-hydroxybutyric acid derivatives by ketoreductase-catalyzed conversion of 4-halo-3-ketobutyric acid derivatives.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: October 24, 2006
    Assignee: Codexis, Inc.
    Inventors: S. Christopher Davis, John H. Grate, David R. Gray, John M. Gruber, Gjalt W. Huisman, Steven K. Ma, Lisa M. Newman, Roger Sheldon, Li A Wang
  • Patent number: 7081357
    Abstract: The gene encoding a 4-hydroxybutyryl-CoA transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, ?-ketoglutarate, or succinate as substrate.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: July 25, 2006
    Assignee: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Patent number: 6913911
    Abstract: Transgenic microbial strains are provided which contain the genes required for PHA formation integrated on the chromosome. The strains are advantageous in PHA production processes, because (1) no plasmids need to be maintained, generally obviating the required use of antibiotics or other stabilizing pressures, and (2) no plasmid loss occurs, thereby stabilizing the number of gene copies per cell throughout the fermentation process, resulting in homogeneous PHA product formation throughout the production process. Genes are integrated using standard techniques, preferably transposon mutagenesis. In a preferred embodiment wherein mutiple genes are incorporated, these are incorporated as an operon. Sequences are used to stabilize mRNA, to induce expression as a function of culture conditions (such as phosphate concentration), temperature, and stress, and to aid in selection, through the incorporation of selection markers such as markers conferring antibiotic resistance.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: July 5, 2005
    Assignee: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Oliver P. Peoples, Frank A. Skraly
  • Publication number: 20040214297
    Abstract: The present invention provides methods and compositions for preparing 4-substituted 3-hydroxybutyric acid derivatives by halohydrin dehalogenase-catalyzed conversion of 4-halo-3-hydroxybutyric acid derivatives. The present invention further provides methods and compositions for preparing 4-halo-3-hydroxybutyric acid derivatives by ketoreductase-catalyzed conversion of 4-halo-3-ketobutyric acid derivatives The present invention also provides methods and compositions for preparing vicinal cyano, hydroxyl substituted carboxylic acid esters.
    Type: Application
    Filed: February 18, 2004
    Publication date: October 28, 2004
    Inventors: S. Christopher Davis, John H. Grate, David R. Gray, John M. Gruber, Gjalt W. Huisman, Steven K. Ma, Lisa M. Newman, Roger Sheldon, Li A. Wang
  • Publication number: 20040172675
    Abstract: Methods for engineering transgenic organisms that synthesize polyhydroxyalkanoates (PHAs) containing 3-hydroxyhexanoate as comonomer have been developed. These processes are based on genetically engineered bacteria such as Escherichia coli or in plant crops as production systems which include PHA biosynthetic genes from PHA producers. In a preferred embodiment of the method, additional genes are introduced in wild type or transgenic polyhydroxybutyrate (PHB) producers, thereby creating new strains that synthesize 3HH monomers which are incorporated into PHAs. The 3HH monomer preferably is derived in microbial systems using butanol or butyrate as feedstocks, which are precursors of 3-hydroxyhexanoyl-CoA. Pathways for in vivo production of butyrol-CoA specifically encompassing butyryl-CoA dehydrogenase activity are provided.
    Type: Application
    Filed: November 7, 2003
    Publication date: September 2, 2004
    Applicant: Metabolix, Inc.
    Inventors: Lara Madison, Gjalt W. Huisman, Oliver P. Peoples
  • Publication number: 20040137585
    Abstract: The present invention provides methods and compositions for preparing 4-substituted 3-hydroxybutyric acid derivatives by halohydrin dehalogenase-catalyzed conversion of 4-halo-3-hydroxybutyric acid derivatives. The present invention further provides methods and compositions for preparing 4-halo-3-hydroxybutyric acid derivatives by ketoreductase-catalyzed conversion of 4-halo-3-ketobutyric acid derivatives.
    Type: Application
    Filed: August 11, 2003
    Publication date: July 15, 2004
    Inventors: S. Christopher Davis, John H. Grate, David R. Gray, John M. Gruber, Gjalt W. Huisman, Steven K. Ma, Lisa M. Newman, Roger Sheldon, Li A. Wang
  • Publication number: 20040137586
    Abstract: The gene encoding a 4-hydroxybutyryl-Co A transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, &agr;-ketoglutarate, or succinate as substrate.
    Type: Application
    Filed: February 6, 2004
    Publication date: July 15, 2004
    Applicant: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Patent number: 6689589
    Abstract: The gene encoding a 4-hydroxybutyryl-Co A transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, &agr;-ketoglutarate, or succinate as substrate.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 10, 2004
    Assignee: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Publication number: 20040014197
    Abstract: DNA constructs and genetically engineered microbial strains constructed using these DNA constructs, which produce a nuclease enzyme with specificity for DNA and/or RNA, are provided. These strains secrete nuclease into the periplasm or growth medium in an amount effective to enhance productivity and/or recovery of polymer, and are particularly suited for use in high cell density fermentation processes. These constructs are useful for modifying microbial strains to improve production and recovery processes for polymers such as intracellular proteins, such as enzymes, growth factors, and cytokines; for producing polyhydroxyalkanoates; and for producing extracellular polysaccharides, such as xanthan gum, alginates, gellan gum, zooglan, hyaluronic acid and microbial cellulose.
    Type: Application
    Filed: June 27, 2003
    Publication date: January 22, 2004
    Applicant: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Laura Z. Luo, Oliver P. Peoples
  • Publication number: 20030228669
    Abstract: Transgenic microbial strains are provided which contain the genes required for PHA formation integrated on the chromosome. The strains are advantageous in PHA production processes, because (1) no plasmids need to be maintained, generally obviating the required use of antibiotics or other stabilizing pressures, and (2) no plasmid loss occurs, thereby stabilizing the number of gene copies per cell throughout the fermentation process, resulting in homogeneous PHA product formation throughout the production process. Genes are integrated using standard techniques, preferably transposon mutagenesis. In a preferred embodiment wherein mutiple genes are incorporated, these are incorporated as an operon. Sequences are used to stabilize mRNA, to induce expression as a function of culture conditions (such as phosphate concentration), temperature, and stress, and to aid in selection, through the incorporation of selection markers such as markers conferring antibiotic resistance.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 11, 2003
    Applicant: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Oliver P. Peoples, Frank A. Skraly
  • Patent number: 6593116
    Abstract: Transgenic microbial strains are provided which contain the genes required for PHA formation integrated on the chromosome. The strains are advantageous in PHA production processes, because (1) no plasmids need to be maintained, generally obviating the required use of antibiotics or other stabilizing pressures, and (2) no plasmid loss occurs, thereby stabilizing the number of gene copies per cell throughout the fermentation process, resulting in homogeneous PHA product formation throughout the production process. Genes are integrated using standard techniques, preferably transposon mutagenesis. In a preferred embodiment wherein mutiple genes are incorporated, these are incorporated as an operon. Sequences are used to stabilize mRNA, to induce expression as a function of culture conditions (such as phosphate concentration), temperature, and stress, and to aid in selection, through the incorporation of selection markers such as markers conferring antibiotic resistance.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: July 15, 2003
    Assignee: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Oliver P. Peoples, Frank A. Skraly
  • Publication number: 20030049867
    Abstract: Methods and apparatuses for performing high throughput magnetic resonance imaging spectroscopy, e.g., to screen libraries of chemical or biological compositions for a compound of interest, are provided. Methods of identifying metabolic disorder genes, modulatory compounds and catalysts, and methods of optimizing reaction conditions, using high throughout MRI screening, are also provided.
    Type: Application
    Filed: September 19, 2002
    Publication date: March 13, 2003
    Inventors: Sergey A. Selifonov, Gjalt W. Huisman
  • Publication number: 20020187530
    Abstract: The gene encoding a 4-hydroxybutyryl-Co A transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, &agr;-ketoglutarate, or succinate as substrate.
    Type: Application
    Filed: November 9, 2001
    Publication date: December 12, 2002
    Applicant: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Publication number: 20020173019
    Abstract: In order to optimize the flux or flow of carbon intermediates from normal cellular metabolism into PHAs it is desirable to optimize the expression of the enzymes of the PHA biosynthetic pathway. Gene fusions are genetic constructs where two open reading frames have been fused into one and encode hybrid proteins and in some cases bifunctional hybrid enzymes. Linkers may be added to spatially separate the two domains of the hybrid protein. In the case of enzymes which catalyse successive reactions in a pathway, the fusion of two genes results in bringing two enzymatic activities into close proximity to each other. When the product of the first reaction is a substrate for the second one, this new configuration of active sites may result in a faster transfer of the product of the first reaction to the second active site with a potential for increasing the flux through the pathway.
    Type: Application
    Filed: July 30, 1999
    Publication date: November 21, 2002
    Inventors: OLIVER P. PEOPLES, LARA L. MADISON, GJALT W. HUISMAN
  • Publication number: 20020040485
    Abstract: Methods for engineering transgenic organisms that synthesize polyhydroxyalkanoates (PHAs) containing 3-hydroxyhexanoate as comonomer have been developed. These processes are based on genetically engineered bacteria such as Escherichia coli or in plant crops as production systems which include PHA biosynthetic genes from PHA producers. In a preferred embodiment of the method, additional genes are introduced in wild type or transgenic polyhydroxybutyrate (PHB) producers, thereby creating new strains that synthesize 3HH monomers which are incorporated into PHAs. The 3HH monomer preferably is derived in microbial systems using butanol or butyrate as feedstocks, which are precursors of 3-hydroxyhexanoyl-CoA. Pathways for in vivo production of butyrol-CoA specifically encompassing butyryl-CoA dehydrogenase activity are provided.
    Type: Application
    Filed: January 22, 1999
    Publication date: April 4, 2002
    Inventors: LARA MADISON, GJALT W. HUISMAN, OLIVER P. PEOPLES
  • Patent number: 6316262
    Abstract: The gene encoding a 4-hydroxybutyryl-Co A transferase has been isolated from bacteria and integrated into the genome of bacteria also expressing a polyhydroxyalkanoate synthase, to yield an improved production process for 4HB-containing polyhydroxyalkanoates using transgenic organisms, including both bacteria and plants. The new pathways provide means for producing 4HB containing PHAs from cheap carbon sources such as sugars and fatty acids, in high yields, which are stable. Useful strains are obtaining by screening strains having integrated into their genomes a gene encoding a 4HB-CoA transferase and/or PHA synthase, for polymer production. Processes for polymer production use recombinant systems that can utilize cheap substrates. Systems are provided which can utilize amino acid degradation pathways, &agr;-ketoglutarate, or succinate as substrate.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: November 13, 2001
    Assignee: Metabolix, Inc.
    Inventors: Gjalt W. Huisman, Frank Skraly, David P. Martin, Oliver P. Peoples
  • Publication number: 20010024796
    Abstract: Methods and apparatuses for performing high throughput magnetic resonance imaging spectroscopy, e.g., to screen libraries of chemical or biological compositions for a compound of interest, are provided. Methods of identifying metabolic disorder genes, modulatory compounds and catalysts, and methods of optimizing reaction conditions, using high throughout MRI screening, are also provided.
    Type: Application
    Filed: December 15, 2000
    Publication date: September 27, 2001
    Inventors: Sergey A. Selifonov, Gjalt W. Huisman
  • Patent number: 5344769
    Abstract: The invention relates to a microbiological process for the production of polyesters and utilizes bacteria of the Pseudomanas fluorescens rRNA branch according to the phylogenetic classification of De Vos and De Ley. These bacteria are cultured under aerobic fermentation conditions in a nutrient medium comprising an excess of at least one assimilarable acylic aliphatic hydrocarbon compound having 6-18 carbon atoms and a limiting quantity of at least one of other nutrients essential for growth to form poly-3-hydroxyalkanaoates.
    Type: Grant
    Filed: October 24, 1991
    Date of Patent: September 6, 1994
    Assignee: Rijksuniversiteit te Groningen
    Inventors: Bernard Witholt, Gerrit Eggink, Gjalt W. Huisman