Patents by Inventor Gjalt W. Huisman

Gjalt W. Huisman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170067032
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize a variety of chiral compounds.
    Type: Application
    Filed: November 16, 2016
    Publication date: March 9, 2017
    Inventors: Jack Liang, Stephane J. Jenne, Emily Mundorff, Charlene Ching, John M. Gruber, Anke Krebber, Gjalt W. Huisman
  • Publication number: 20170022527
    Abstract: The present disclosure provides engineered polypeptides having imine reductase activity, polynucleotides encoding the engineered imine reductases, host cells capable of expressing the engineered imine reductases, and methods of using these engineered polypeptides with a range of ketone and amine substrate compounds to prepare secondary and tertiary amine product compounds.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: Haibin Chen, Steven J. Collier, Jovana Nazor, Joly Sukumaran, Derek Smith, Jeffrey C. Moore, Gregory Hughes, Jacob Janey, Gjalt W. Huisman, Scott J. Novick, Nicholas J. Agard, Oscar Alvizo, Gregory A. Cope, Wan Lin Yeo, Stefanie Ng Minor
  • Patent number: 9528131
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize a variety of chiral compounds.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: December 27, 2016
    Assignee: Codexis, Inc.
    Inventors: Jack Liang, Stephane J. Jenne, Emily Mundorff, Charlene Ching, John M. Gruber, Anke Krebber, Gjalt W. Huisman
  • Patent number: 9487760
    Abstract: The present disclosure provides engineered polypeptides having imine reductase activity, polynucleotides encoding the engineered imine reductases, host cells capable of expressing the engineered imine reductases, and methods of using these engineered polypeptides with a range of ketone and amine substrate compounds to prepare secondary and tertiary amine product compounds.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: November 8, 2016
    Assignee: Codexis, Inc.
    Inventors: Haibin Chen, Steven J. Collier, Jovana Nazor, Joly Sukumaran, Derek Smith, Jeffrey C. Moore, Gregory Hughes, Jacob Janey, Gjalt W. Huisman, Scott J. Novick, Nicholas J. Agard, Oscar Alvizo, Gregory A. Cope, Wan Lin Yeo, Stefanie Ng Minor
  • Publication number: 20160289717
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize chiral compounds.
    Type: Application
    Filed: June 16, 2016
    Publication date: October 6, 2016
    Inventors: Jack S Liang, Stephan Jenne, Emily Mundorff, Rama Voladri, James J. Lalonde, Gjalt W. Huisman
  • Publication number: 20160273007
    Abstract: The disclosure relates to engineered enone reductase polypeptides having improved properties, polynucleotides encoding the engineered polypeptides, related vectors, host cells, and methods for making the engineered enone reductase polypeptides. The disclosure also provides methods of using the engineered enone reductase polypeptides for chemical transformations.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 22, 2016
    Inventors: Christopher K. Savile, Vesna Mitchell, Xiyun Zhang, Gjalt W. Huisman
  • Patent number: 9394552
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize chiral compounds.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: July 19, 2016
    Assignee: Codexis, Inc.
    Inventors: Jack S Liang, Stephan Jenne, Emily Mundorff, Rama Voladri, James J. Lalonde, Gjalt W. Huisman
  • Patent number: 9388438
    Abstract: The disclosure relates to engineered enone reductase polypeptides having improved properties, polynucleotides encoding the engineered polypeptides, related vectors, host cells, and methods for making the engineered enone reductase polypeptides. The disclosure also provides methods of using the engineered enone reductase polypeptides for chemical transformations.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: July 12, 2016
    Assignee: Codexis, Inc.
    Inventors: Christopher K. Savile, Vesna Mitchell, Xiyun Zhang, Gjalt W. Huisman
  • Publication number: 20160168545
    Abstract: The present disclosure provides engineered polypeptides having imine reductase activity, polynucleotides encoding the engineered imine reductases, host cells capable of expressing the engineered imine reductases, and methods of using these engineered polypeptides with a range of ketone and amine substrate compounds to prepare secondary and tertiary amine product compounds.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Haibin Chen, Steven J. Collier, Jovana Nazor, Joly Sukumaran, Derek Smith, Jeffrey C. Moore, Gregory Hughes, Jacob Janey, Gjalt W. Huisman, Scott J. Novick, Nicholas J. Agard, Oscar Alvizo, Gregory A. Cope, Wan Lin Yeo, Stefanie Ng Minor
  • Patent number: 9296993
    Abstract: The present disclosure provides engineered polypeptides having imine reductase activity, polynucleotides encoding the engineered imine reductases, host cells capable of expressing the engineered imine reductases, and methods of using these engineered polypeptides with a range of ketone and amine substrate compounds to prepare secondary and tertiary amine product compounds.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: March 29, 2016
    Assignee: Codexis, Inc.
    Inventors: Haibin Chen, Steven J. Collier, Jovana Nazor, Joly Sukumaran, Derek Smith, Jeffrey C. Moore, Gregory Hughes, Jacob Janey, Gjalt W. Huisman, Scott J. Novick, Nicholas J. Agard, Oscar Alvizo, Gregory A. Cope, Wan Lin Yeo, Stefanie Ng Minor
  • Publication number: 20160083759
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize a variety of chiral compounds. The engineered ketoreductase polypeptides are optimized for catalyzing the conversion of N-methyl-3-keto-3-(2-thienyl)-1-propanamine to (S)—N-methyl-3-hydroxy-3-(2-thienyl)-1-propanamine.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 24, 2016
    Inventors: Christopher Savile, John M. Gruber, Emily Mundorff, Gjalt W. Huisman, Steven J. Collier
  • Publication number: 20160040140
    Abstract: The present disclosure provides engineered polypeptides having imine reductase activity, polynucleotides encoding the engineered imine reductases, host cells capable of expressing the engineered imine reductases, and methods of using these engineered polypeptides with a range of ketone and amine substrate compounds to prepare secondary and tertiary amine product compounds.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Inventors: Haibin Chen, Steven J. Collier, Jovana Nazor, Joly Sukumaran, Derek Smith, Jeffrey C. Moore, Gregory Hughes, Jacob Janey, Gjalt W. Huisman, Scott J. Novick, Nicholas J. Agard, Oscar Alvizo, Gregory A. Cope, Wan Lin Yeo, Stefanie Ng Minor
  • Patent number: 9228223
    Abstract: The present disclosure relates to compositions and methods for screening a plurality of polypeptide variants.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: January 5, 2016
    Assignee: Codexis, Inc.
    Inventors: Emily Mundorff, Simon Christopher Davis, Gjalt W. Huisman, Anke Krebber, John H. Grate, Richard Fox
  • Patent number: 9228213
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize a variety of chiral compounds. The engineered ketoreductase polypeptides are optimized for catalyzing the conversion of N-methyl-3-keto-3-(2-thienyl)-1-propanamine to (S)—N-methyl-3-hydroxy-3-(2-thienyl)-1-propanamine.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 5, 2016
    Assignee: Codexis, Inc.
    Inventors: Christopher Savile, John M. Gruber, Emily Mundorff, Gjalt W. Huisman, Steven J. Collier
  • Publication number: 20150315613
    Abstract: The disclosure relates to engineered enone reductase polypeptides having improved properties, polynucleotides encoding the engineered polypeptides, related vectors, host cells, and methods for making the engineered enone reductase polypeptides. The disclosure also provides methods of using the engineered enone reductase polypeptides for chemical transformations.
    Type: Application
    Filed: July 15, 2015
    Publication date: November 5, 2015
    Inventors: Christopher K. Savile, Vesna Mitchell, Xiyun Zhang, Gjalt W. Huisman
  • Publication number: 20150299689
    Abstract: The present invention provides engineered tyrosine ammonia-lyase (TAL) polypeptides and compositions thereof. In some embodiments, the engineered TAL polypeptides have been optimized to provide enhanced catalytic activity while reducing sensitivity to proteolysis and increasing tolerance to acidic pH levels. The invention also provides methods for utilization of the compositions comprising the engineered TAL polypeptides for therapeutic and industrial purposes.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 22, 2015
    Inventors: Gjalt W. Huisman, Nicholas J. Agard, David Elgart, Xiyun Zhang
  • Patent number: 9121045
    Abstract: The disclosure relates to engineered enone reductase polypeptides having improved properties, polynucleotides encoding the engineered polypeptides, related vectors, host cells, and methods for making the engineered enone reductase polypeptides. The disclosure also provides methods of using the engineered enone reductase polypeptides for chemical transformations.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: September 1, 2015
    Assignee: Codexis, Inc.
    Inventors: Christopher K. Savile, Vesna Mitchell, Xiyun Zhang, Gjalt W. Huisman
  • Publication number: 20150191767
    Abstract: The present disclosure relates to compositions and methods for screening a plurality of polypeptide variants.
    Type: Application
    Filed: March 19, 2015
    Publication date: July 9, 2015
    Inventors: Emily Mundorff, Simon Christopher Davis, Gjalt W. Huisman, Anke Krebber, John H. Grate, Richard Fox
  • Publication number: 20150133307
    Abstract: Disclosed are methods for identifying bio-molecules with desired properties (or which are most suitable for a round of directed evolution) from complex bio-molecule libraries or sets of such libraries. Some embodiments of the present disclosure provide methods for virtually screening proteins for beneficial properties. Some embodiments of the present disclosure provide methods for virtually screening enzymes for desired activity and/or selectivity for catalytic reactions involving particular substrates. Some embodiments combine screening and directed evolution to design and develop proteins and enzymes having desired properties. Systems and computer program products implementing the methods are also provided.
    Type: Application
    Filed: September 26, 2014
    Publication date: May 14, 2015
    Inventors: Xiyun Zhang, Russell Javiniar Sarmiento, Donald Scott Baskerville, Gjalt W. Huisman
  • Publication number: 20150125910
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize chiral compounds.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventors: Jack S. Liang, Stephan Jenne, Emily Mundorff, Rama Voladri, James J. Lalonde, Gjalt W. Huisman