Patents by Inventor Glenn D. Fisseler

Glenn D. Fisseler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10473807
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: November 12, 2019
    Assignee: MAGSEIS FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 10422908
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: September 24, 2019
    Assignee: Magseis FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20190235127
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by wireless seismic data acquisition units in a seismic system. The receiver can replicate local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver can replicate local version of remote common time reference to time stamp local node events. The receiver can be placed in a low power, non-operational state over periods of time during which the unit continues to record seismic data, thus conserving unit battery power. The system corrects the local time clock based on intermittent access to the common remote time reference. The system corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 10281613
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by wireless seismic data acquisition units in a seismic system. The receiver can replicate local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver can replicate local version of remote common time reference to time stamp local node events. The receiver can be placed in a low power, non-operational state over periods of time during which the unit continues to record seismic data, thus conserving unit battery power. The system corrects the local time clock based on intermittent access to the common remote time reference. The system corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors. The system provides a more stable method of correcting drift in the local time clock.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: May 7, 2019
    Assignee: MAGSEIS FF LLC
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 10045455
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: August 7, 2018
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9829594
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: November 28, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 9829589
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 28, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20170299749
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Publication number: 20170261628
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20170261627
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20170254913
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 7, 2017
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20170212261
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Application
    Filed: April 6, 2017
    Publication date: July 27, 2017
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Publication number: 20170184745
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: March 14, 2017
    Publication date: June 29, 2017
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Publication number: 20170176638
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by wireless seismic data acquisition units in a seismic system. The receiver can replicate local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver can replicate local version of remote common time reference to time stamp local node events. The receiver can be placed in a low power, non-operational state over periods of time during which the unit continues to record seismic data, thus conserving unit battery power. The system corrects the local time clock based on intermittent access to the common remote time reference. The system corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors. The system provides a more stable method of correcting drift in the local time clock.
    Type: Application
    Filed: January 10, 2017
    Publication date: June 22, 2017
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9630691
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: April 25, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Patent number: 9562984
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system. The receiver is capable of replicating local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver is capable of replicating local version of remote common time reference for the purpose of time stamping local node events. The receiver is capable of being placed in a low power, non-operational state over periods of time during which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power. The system implements a method to correct the local time clock based on intermittent access to the common remote time reference. The method corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 7, 2017
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Publication number: 20160374226
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 22, 2016
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Publication number: 20160370479
    Abstract: The transmission system combines a self-contained, wireless seismic acquisition unit and a wireless, line of site, communications unit to form a plurality of individual short-range transmission networks and also a mid-range, line of sight transmission network. Each seismic unit has a power source, a short-range transmitter/receiver disposed within a casing and a geophone disposed within the casing. Each wireless communications unit is formed of an elongated support structure on which is mounted an independent power source, mid-range radio transmitter/receiver; and a short-range transmitter/receiver configured to wirelessly communicate with the short-range transmitter/receiver of the acquisition unit. Preferably, when deployed, the acquisition unit is buried under the surface of the ground, while the wireless communications unit is positioned in the near vicinity of the buried unit so as to vertically protrude above the ground.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 9488743
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: November 8, 2016
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9465124
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system. The receiver is capable of replicating local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver is capable of replicating local version of remote common time reference for the purpose of time stamping local node events. The receiver is capable of being placed in a low power, non-operational state over periods of time during which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power. The system implements a method to correct the local time clock based on intermittent access to the common remote time reference. The method corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 11, 2016
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton