Patents by Inventor Glenn D. Fisseler

Glenn D. Fisseler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9465124
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system. The receiver is capable of replicating local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver is capable of replicating local version of remote common time reference for the purpose of time stamping local node events. The receiver is capable of being placed in a low power, non-operational state over periods of time during which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power. The system implements a method to correct the local time clock based on intermittent access to the common remote time reference. The method corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 11, 2016
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9459359
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: October 4, 2016
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9459360
    Abstract: The transmission system combines a self-contained, wireless seismic acquisition unit and a wireless, line of site, communications unit to form a plurality of individual short-range transmission networks and also a mid-range, line of sight transmission network. Each seismic unit has a power source, a short-range transmitter/receiver disposed within a casing and a geophone disposed within the casing. Each wireless communications unit is formed of an elongated support structure on which is mounted an independent power source, mid-range radio transmitter/receiver; and a short-range transmitter/receiver configured to wirelessly communicate with the short-range transmitter/receiver of the acquisition unit. Preferably, when deployed, the acquisition unit is buried under the surface of the ground, while the wireless communications unit is positioned in the near vicinity of the buried unit so as to vertically protrude above the ground.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: October 4, 2016
    Assignee: FAIRFIELD INDUSTRIES INCORPORATED
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Publication number: 20150049584
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 19, 2015
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 8885441
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 11, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8879362
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: November 4, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 8879356
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: November 4, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8873335
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 28, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8873336
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 28, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8867310
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 21, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8867309
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: October 21, 2014
    Assignee: Fairfield Industries Incorporated
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Publication number: 20140186122
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 3, 2014
    Applicant: Fairfield Industries Incorporated
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Publication number: 20140186123
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 3, 2014
    Applicant: Fairfield Industries Incorporated
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Patent number: 8705314
    Abstract: A deployment and retrieval method for ocean bottom seismic receivers, the method employs a remotely operated vehicle (ROV) having a carrier attached thereto to carry a plurality of receivers. The receivers are individually placed on the ocean bottom floor by utilizing a conveyor to move the receivers along a linear path to remove the receivers from the carrier. In one embodiment, multiple linear conveyors may be operated independently to alter the relative positions of the receivers on the respective conveyors to adjust the weight distribution of the receivers within the carrier.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: April 22, 2014
    Assignee: Fairfield Industries Incorporated
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Publication number: 20140104987
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Publication number: 20140098640
    Abstract: The transmission system combines a self-contained, wireless seismic acquisition unit and a wireless, line of site, communications unit to form a plurality of individual short-range transmission networks and also a mid-range, line of sight transmission network. Each seismic unit has a power source, a short-range transmitter/receiver disposed within a casing and a geophone disposed within the casing. Each wireless communications unit is formed of an elongated support structure on which is mounted an independent power source, mid-range radio transmitter/receiver; and a short-range transmitter/receiver configured to wirelessly communicate with the short-range transmitter/receiver of the acquisition unit. Preferably, when deployed, the acquisition unit is buried under the surface of the ground, while the wireless communications unit is positioned in the near vicinity of the buried unit so as to vertically protrude above the ground.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 10, 2014
    Applicant: Fairfield Industries Incorporated
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Publication number: 20140098641
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 10, 2014
    Applicant: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Publication number: 20140086010
    Abstract: A wireless seismic data acquisition unit with a wireless receiver providing access to a common remote time reference shared by a plurality of wireless seismic data acquisition units in a seismic system. The receiver is capable of replicating local version of remote time epoch to which a seismic sensor analog-to-digital converter is synchronized. The receiver is capable of replicating local version of remote common time reference for the purpose of time stamping local node events. The receiver is capable of being placed in a low power, non-operational state over periods of time during which the seismic data acquisition unit continues to record seismic data, thus conserving unit battery power. The system implements a method to correct the local time clock based on intermittent access to the common remote time reference. The method corrects the local time clock via a voltage controlled oscillator to account for environmentally induced timing errors.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 27, 2014
    Applicant: Fairfield Industries Incorporated
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 8644111
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: February 4, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: RE45268
    Abstract: A seismic exploration method and unit comprised of continuous recording, self-contained wireless seismometer units or pods. The self-contained unit may include a tilt meter, a compass and a mechanically gimbaled clock platform. Upon retrieval, seismic data recorded by the unit can be extracted and the unit can be charged, tested, re-synchronized, and operation can be re-initiated without the need to open the unit's case. The unit may include an additional geophone to mechanically vibrate the unit to gauge the degree of coupling between the unit and the earth. The unit may correct seismic data for the effects of crystal aging arising from the clock. Deployment location of the unit may be determined tracking linear and angular acceleration from an initial position. The unit may utilize multiple geophones angularly oriented to one another in order to redundantly measure seismic activity in a particular plane.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: December 2, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, Hal B. Haygood