Patents by Inventor Gm Salam Azad

Gm Salam Azad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9062557
    Abstract: A gas turbine having rotor discs (9), a disc cavity (13) and a stator stage (25) extending to the disc cavity (13). Seal housing flanges (43, 44) extend from a seal housing (29) of the stator stage (25). Rotor flanges (41i, 41o) extend from a rotor disk (9-1). An inner rotor flange (41i) and first seal housing flange (43) are inward from a second seal housing flange (44). One rotor flange (41o) is outward from the second seal housing flange (44). The inner rotor flange (41i) and first seal housing flange (43) extend toward one another to limit movement of main gas flow (17). An inlet (47) injects air (50) between the outward rotor flange (41o) and second seal housing flange (44).
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: June 23, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Kok-Mun Tham, Ching-Pang Lee, Abdullatif M. Chehab, Gm Salam Azad, Shantanu P. Mhetras, Manjit Shivanand, Vincent P. Laurello, Christopher Rawlings
  • Publication number: 20150122446
    Abstract: An investment casting method for a cast ceramic core (110), including an airfoil portion (116) shaped to define an inner surface (56) of an airfoil (52) of a vane segment (50) and an integral shell portion (122) having a backside-shaping surface (120) shaped to define a backside surface (68) of a shroud (62) of the vane segment. The backside-shaping surface has a higher elevation (132) and a lower elevation (134). The higher elevation is set apart from a nearest point (138) on the airfoil portion by the lower elevation. The airfoil portion and the shell portion are cast as a monolithic body during a single casting pour.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: Ching-Pang Lee, Gerald L. Hillier, Jae Y. Um, Gm Salam Azad
  • Publication number: 20150122450
    Abstract: A cast ceramic core (110), including: an airfoil portion (116) shaped to define an inner surface (56) of an airfoil (52) of a vane segment (50); and a shell portion (122) having a backside-shaping surface (120) shaped to define a backside surface (68) of a shroud (62) of the vane segment. The backside-shaping surface has a higher elevation (132) and a lower elevation (134). The higher elevation is set apart from a nearest point (138) on the airfoil portion by the lower elevation. The airfoil portion and the shell portion are cast as a monolithic body during a single casting pour.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: Ching-Pang Lee, Gerald L. Hillier, Jae Y. UM, Gm Salam Azad
  • Patent number: 8985949
    Abstract: An airfoil in a gas turbine engine includes an outer wall, a cooling fluid cavity, and a cooling system. The outer wall has a leading edge, a trailing edge, a pressure side, a suction side, and radially inner and outer ends. The cooling fluid cavity is defined in the outer wall, extends generally radially between the inner and outer ends of the outer wall, and receives cooling fluid for cooling the outer wall. The cooling system receives cooling fluid from the cooling fluid cavity for cooling the trailing edge portion of the outer wall and includes a cooling fluid chamber defined by opposing first and second sidewalls that include respective alternating angled sections that provide the cooling fluid chamber with a zigzag shape.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: March 24, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Ralph W. Matthews, Gm Salam Azad, Manjit Shivanand
  • Publication number: 20150071763
    Abstract: A seal assembly between a hot gas path and a disc cavity in a turbine engine includes a non-rotatable vane assembly including a row of vanes and an inner shroud, a rotatable blade assembly axially adjacent to the vane assembly and including a row of blades and a turbine disc that forms a part of a turbine rotor, and an annular wing member located radially between the hot gas path and the disc cavity. The wing member extends generally axially from the blade assembly toward the vane assembly and includes a plurality of circumferentially spaced apart flow passages extending therethrough from a radially inner surface thereof to a radially outer surface thereof. The flow passages each include a portion that is curved as the passage extends radially outwardly to effect a scooping of cooling fluid from the disc cavity into the flow passages and toward the hot gas path.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Manjit Shivanand, Vincent Paul Laurello, Gm Salam Azad, Nicholas F. Martin, JR.
  • Patent number: 8939707
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting rows of stepped first ridges in planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. Each stepped first ridge has a first portion proximal the substrate surface with a pair of first opposed lateral walls terminating in a plateau, and a second portion terminating in a ridge tip. These ridge or rib embodiments have first lower and second upper wear zones. The lower zone, which at and below first portion height, optimizes engine airflow characteristics, while the upper zone, between the plateau and the second portion ridge is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 27, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Neil Hitchman, David G. Sansom, Barrry L. Allmon
  • Patent number: 8939706
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with composite grooves and vertically projecting rows of ridges in planform patterns, establishing upper and lower wear zones. The lower wear zone reduces, redirects and/or blocks blade tip downstream airflow leakage, while the upper wear zone is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone. An elongated first ridge in the lower wear zone terminates in a continuous surface plateau. A plurality of second ridges or nibs, separated by grooves, project from the plateau, forming the upper wear zone. Each of the second ridges has a planform cross section smaller than the plateau planform cross section and a height smaller than the first ridge height. Some embodiments of the second ridges have spacing, planform cross sections, heights and separating groove dimensions selected for shearing when contacted by turbine blade tips.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 27, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Gm Salam Azad, Zhihong Gao, Neil Hitchman, David G. Sansom, Barrry L. Allmon, Jonathan E. Shipper, Jr., Cora Schillig, Gary B. Merrill, Dimitrios Zois, Ramesh Subramanian
  • Patent number: 8939716
    Abstract: Turbine and compressor casing abradable component embodiments for turbine engines, with nested loop pattern abradable surface ridges and grooves. The nested loops comprise nested fully closed loops or a spiraling maze pattern loop. Some embodiments include distinct forward upstream and aft downstream composite multi orientation groove and vertically projecting ridges planform patterns, to reduce, redirect and/or block blade tip airflow leakage downstream into the grooves rather than from turbine blade airfoil high to low pressure sides. Ridge or rib embodiments have first lower and second upper wear zones. The lower zone optimizes engine airflow characteristics while the upper zone is optimized to minimize blade tip gap and wear by being more easily abradable than the lower zone.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: January 27, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Vincent P. Laurello, Gm Salam Azad, Nicholas F. Martin, Jr.
  • Patent number: 8939711
    Abstract: A seal assembly between a hot gas path and a disc cavity in a turbine engine includes a non-rotatable vane assembly including a row of vanes and an inner shroud, a rotatable blade assembly adjacent to the vane assembly and including a row of blades and a turbine disc that forms a part of a turbine rotor, and an annular wing member located radially between the hot gas path and the disc cavity. The wing member extends generally axially from the blade assembly toward the vane assembly and includes a plurality of circumferentially spaced apart flow passages extending therethrough from a radially inner surface thereof to a radially outer surface thereof. The flow passages effect a pumping of cooling fluid from the disc cavity toward the hot gas path during operation of the engine.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: January 27, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Manjit Shivanand, Vincent P. Laurello, Gm Salam Azad, Nicholas F. Martin, Jr.
  • Publication number: 20140321980
    Abstract: An airfoil in a gas turbine engine includes an outer wall, a cooling fluid cavity, and a cooling system. The outer wall has a leading edge, a trailing edge, a pressure side, a suction side, and radially inner and outer ends. The cooling fluid cavity is defined in the outer wall, extends generally radially between the inner and outer ends of the outer wall, and receives cooling fluid for cooling the outer wall. The cooling system receives cooling fluid from the cooling fluid cavity for cooling the trailing edge portion of the outer wall and includes a cooling fluid chamber defined by opposing first and second sidewalls that include respective alternating angled sections that provide the cooling fluid chamber with a zigzag shape.
    Type: Application
    Filed: April 29, 2013
    Publication date: October 30, 2014
    Inventors: Ching-Pang Lee, Ralph W. Matthews, Gm Salam Azad, Manjit Shivanand
  • Publication number: 20140234076
    Abstract: A seal assembly between a hot gas path and a disc cavity in a turbine engine includes a non-rotatable vane assembly including a row of vanes and an inner shroud, a rotatable blade assembly adjacent to the vane assembly and including a row of blades and a turbine disc that forms a part of a turbine rotor, and an annular wing member located radially between the hot gas path and the disc cavity. The wing member extends generally axially from the blade assembly toward the vane assembly and includes a plurality of circumferentially spaced apart flow passages extending therethrough from a radially inner surface thereof to a radially outer surface thereof. The flow passages effect a pumping of cooling fluid from the disc cavity toward the hot gas path during operation of the engine.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Manjit Shivanand, Vincent P. Laurello, Gm Salam Azad, Nicholas F. Martin, JR.
  • Publication number: 20130058756
    Abstract: A gas turbine having rotor discs (9), a disc cavity (13) and a stator stage (25) extending to the disc cavity (13). Seal housing flanges (43, 44) extend from a seal housing (29) of the stator stage (25). Rotor flanges (41i, 41o) extend from a rotor disk (9-1). An inner rotor flange (41i) and first seal housing flange (43) are inward from a second seal housing flange (44). One rotor flange (41o) is outward from the second seal housing flange (44). The inner rotor flange (41i) and first seal housing flange (43) extend toward one another to limit movement of main gas flow (17). An inlet (47) injects air (50) between the outward rotor flange (41o) and second seal housing flange (44).
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Inventors: Kok-Mun THAM, Ching-Pang LEE, Abdullatif M. CHEHAB, Gm Salam AZAD, Shantanu P. MHETRAS, Manjit SHIVANAND, Vincent P. LAURELLO, Christopher RAWLINGS
  • Publication number: 20120177479
    Abstract: A component in a gas turbine engine includes an airfoil and a shroud. The shroud has an outer surface supporting an end of the airfoil and defines a portion of an annular gas path. The shroud includes axial edges extending between upstream and downstream edges thereof. Each of the axial edges includes a seal slot that receives a seal member extending between the shroud and an adjacent shroud. A cooling air channel extends between the upstream and downstream edges of the shroud. A cooling air supply passage extends from a cooling air chamber at an inner surface of the shroud to the cooling air channel. At least one cooling air exit passage extends from the cooling air channel to one of the axial edges. The cooling air channel is located radially between the outer surface of the shroud and the seal slot.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 12, 2012
    Inventors: Gm Salam Azad, Ching-Pang Lee, Zhihong Gao