Patents by Inventor Gokhan HATIPOGLU

Gokhan HATIPOGLU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10934160
    Abstract: A system includes a pressure sensor combined with a MEMS microphone. The pressure sensor and the MEMS microphone arranged side by side are formed on a same substrate.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: March 2, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Andrew Doller, Gokhan Hatipoglu, Yujie Zhang, Bernhard Gehl, Daniel Christoph Meisel
  • Publication number: 20200382862
    Abstract: An electronic device has an acoustic transducer with an acoustic diaphragm. The diaphragm has opposed first and second major surfaces. A front volume is positioned adjacent the first major surface. A back volume is positioned adjacent the second major surface. An elongated channel defines a barometric vent and extends from a first end fluidly coupled with the front volume to a second end fluidly coupled with the back volume, fluidly coupling the front volume with the back volume. The elongated channel may have a high aspect ratio (L/D), providing the vent with a substantial air mass. The elongated channel may be segmented to define a higher-order filter. For example, a segmented channel can have a cascade of repeating acoustic-mass and acoustic-compliance units, providing the barometric vent with additional degrees-of-freedom for tuning.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 3, 2020
    Inventors: Peter C. Hrudey, Justin D. Crosby, Gokhan Hatipoglu
  • Publication number: 20200382861
    Abstract: An electronic device has an acoustic transducer with an acoustic diaphragm. The diaphragm has opposed first and second major surfaces. A front volume is positioned adjacent the first major surface. A back volume is positioned adjacent the second major surface. An elongated channel defines a barometric vent and extends from a first end fluidly coupled with the front volume to a second end fluidly coupled with the back volume, fluidly coupling the front volume with the back volume. The elongated channel may have a high aspect ratio (L/D), providing the vent with a substantial air mass. The elongated channel may be segmented to define a higher-order filter. For example, a segmented channel can have a cascade of repeating acoustic-mass and acoustic-compliance units, providing the barometric vent with additional degrees-of-freedom for tuning.
    Type: Application
    Filed: May 21, 2020
    Publication date: December 3, 2020
    Inventors: Peter C. Hrudey, Justin D. Crosby, Gokhan Hatipoglu
  • Patent number: 10555088
    Abstract: A microphone system includes first diaphragm element, second diaphragm element spaced apart from the first diaphragm element and connected to the first diaphragm element via a spacer. Disposed between the diaphragm elements is a plate capacitor element.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: February 4, 2020
    Assignees: Akustica, Inc., Robert Bosch GmbH
    Inventors: Daniel Meisel, Bernhard Gehl, Yujie Zhang, Andrew Doller, Gokhan Hatipoglu
  • Publication number: 20190389721
    Abstract: A MEMS transducer system includes a MEMS transducer device for sensing at least one of pressure signal or acoustic signal. The MEMS transducer device includes first and second diaphragms. Formed between the diaphragms are a spacer, plate capacitor elements, and electrode elements. The plate capacitor elements are coupled to the diaphragms via the spacer. An optional member may be disposed within the spacer. The distal ends of the electrode elements are coupled to a structure such as insulator element. An optional oxides may be formed within the plate capacitor elements. Pressure sensing electrode formed between the diaphragms may be coupled to the insulator element.
    Type: Application
    Filed: November 27, 2017
    Publication date: December 26, 2019
    Inventors: Andrew Doller, Gokhan Hatipoglu, Yujie Zhang, Bernhard Gehl, Daniel Christoph Meisel
  • Patent number: 10349188
    Abstract: A Microelectromechanical system (MEMS) microphone comprises a base unit and a driving system disposed on the base unit. The driving system comprises a first diaphragm, a second diaphragm spaced apart from the first diaphragm, and a comb finger counter electrode assembly comprising a moving electrode member, the counter electrode assembly is mechanically coupled to the first and second diaphragms. The driving system further comprises a side wall mechanically coupled the first diaphragm to the second diaphragm defining a sealed electrode region and the sealed electrode region having an encapsulated gas pressure and the comb finger counter electrode assembly is disposed within the sealed electrode region.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 9, 2019
    Assignees: Akustica, Inc., Robert Bosch GmbH
    Inventors: Daniel C. Meisel, Bernhard Gehl, Yujie Zhang, Andrew Doller, Gokhan Hatipoglu
  • Publication number: 20190116429
    Abstract: A Microelectromechanical system (MEMS) microphone comprises a base unit and a driving system disposed on the base unit. The driving system comprises a first diaphragm, a second diaphragm spaced apart from the first diaphragm, and a comb finger counter electrode assembly comprising a moving electrode member, the counter electrode assembly is mechanically coupled to the first and second diaphragms. The driving system further comprises a side wall mechanically coupled the first diaphragm to the second diaphragm defining a sealed electrode region and the sealed electrode region having an encapsulated gas pressure and the comb finger counter electrode assembly is disposed within the sealed electrode region.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 18, 2019
    Inventors: Daniel C. Meisel, Bernhard Gehl, Yujie Zhang, Andy Doller, Gokhan Hatipoglu
  • Publication number: 20190098418
    Abstract: A MEMS microphone includes a substrate, a lower membrane supported on the substrate, an upper membrane suspended above the lower membrane, a first electrode supported on the lower membrane, and a second electrode supported on the upper membrane. The lower membrane and the upper membrane enclose a cavity in which the first electrode and the second electrode are located. The lower membrane and the upper membrane are each formed of silicon carbonitride (SiCN). The first electrode and the second electrode are each formed of polysilicon.
    Type: Application
    Filed: June 28, 2018
    Publication date: March 28, 2019
    Inventors: Christoph Hermes, Bernhard Gehl, Arnim Hoechst, Daniel Meisel, Andrew Doller, Yujie Zhang, Gokhan Hatipoglu
  • Patent number: 10063978
    Abstract: A MEMS microphone includes a base structure and a piezoelectric resonator body having a first end and a second end. The first end is fixedly supported by the base structure and the second end is free such that the piezoelectric resonator is cantilevered from the base structure. The MEMS microphone further includes a first electrode operably connected to the piezoelectric resonator body and a second electrode operably connected to the piezoelectric resonator body. A controller includes at least one circuit operably connected to the first and second electrodes and configured to drive the piezoelectric resonator body at a shear resonance frequency of the piezoelectric resonator body and to detect a difference in the shear resonance frequency from a baseline resonance frequency resulting from a sound pressure.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: August 28, 2018
    Assignees: Akustica, Inc., Robert Bosch GmbH
    Inventor: Gokhan Hatipoglu
  • Publication number: 20180146296
    Abstract: A microphone system includes first diaphragm element, second diaphragm element spaced apart from the first diaphragm element and connected to the first diaphragm element via a spacer. Disposed between the diaphragm elements is a plate capacitor element.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 24, 2018
    Inventors: Daniel Meisel, Bernhard Gehl, Yujie Zhang, Andrew Doller, Gokhan Hatipoglu
  • Patent number: 9966232
    Abstract: A system and method for reactive ion etching (RIE) system of a material is provided. The system includes a plasma chamber comprising a plasma source and a gas inlet, a diffusion chamber comprising a substrate holder for supporting a substrate with a surface comprising the material and a gas diffuser, and a source of a processing gas coupled to the gas diffuser. In the system and method, at least one radical of the processing gas is reactive with the material to perform etching of the material, the gas diffuser is configured to introduce the processing gas into the processing region, and the substrate holder comprises an electrode that can be selectively biased to draw ions generated by the plasma source into the processing region to interact with the at least one processing gas to generate the at least one radical at the surface.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: May 8, 2018
    Assignee: The Penn State Research Foundation
    Inventors: Srinivas Tadigadapa, Gokhan Hatipoglu
  • Publication number: 20180077497
    Abstract: A MEMS microphone includes a base structure and a piezoelectric resonator body having a first end and a second end. The first end is fixedly supported by the base structure and the second end is free such that the piezoelectric resonator is cantilevered from the base structure. The MEMS microphone further includes a first electrode operably connected to the piezoelectric resonator body and a second electrode operably connected to the piezoelectric resonator body. A controller includes at least one circuit operably connected to the first and second electrodes and configured to drive the piezoelectric resonator body at a shear resonance frequency of the piezoelectric resonator body and to detect a difference in the shear resonance frequency from a baseline resonance frequency resulting from a sound pressure.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 15, 2018
    Inventor: Gokhan Hatipoglu
  • Publication number: 20160099132
    Abstract: A system and method for reactive ion etching (RIE) system of a material is provided. The system includes a plasma chamber comprising a plasma source and a gas inlet, a diffusion chamber comprising a substrate holder for supporting a substrate with a surface comprising the material and a gas diffuser, and a source of a processing gas coupled to the gas diffuser. In the system and method, at least one radical of the processing gas is reactive with the material to perform etching of the material, the gas diffuser is configured to introduce the processing gas into the processing region, and the substrate holder comprises an electrode that can be selectively biased to draw ions generated by the plasma source into the processing region to interact with the at least one processing gas to generate the at least one radical at the surface.
    Type: Application
    Filed: December 9, 2015
    Publication date: April 7, 2016
    Inventors: Srinivas TADIGADAPA, Gokhan HATIPOGLU
  • Publication number: 20140166618
    Abstract: A system and method for reactive ion etching (RIE) system of a material is provided. The system includes a plasma chamber comprising a plasma source and a gas inlet, a diffusion chamber comprising a substrate holder for supporting a substrate with a surface comprising the material and a gas diffuser, and a source of a processing gas coupled to the gas diffuser. In the system and method, at least one radical of the processing gas is reactive with the material to perform etching of the material, the gas diffuser is configured to introduce the processing gas into the processing region, and the substrate holder comprises an electrode that can be selectively biased to draw ions generated by the plasma source into the processing region to interact with the at least one processing gas to generate the at least one radical at the surface.
    Type: Application
    Filed: October 14, 2013
    Publication date: June 19, 2014
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Srinivas TADIGADAPA, Gokhan HATIPOGLU