Patents by Inventor Goran Stemme

Goran Stemme has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240082857
    Abstract: A method for forming a monolithic swirl nozzle configured to aerosolize a pharmaceutical drug. The swirl nozzle comprises an inlet for receiving the pharmaceutical drug to be aerosolized; a swirl chamber connected to the inlet and configured to aerosolize the pharmaceutical drug provided by the inlet; and an outlet connected to the swirl chamber and configured to discharge the aerosolized pharmaceutical drug. The method comprises providing a photoactivatable material and forming the swirl nozzle by selectively activating voxels in the photoactivatable material.
    Type: Application
    Filed: January 18, 2022
    Publication date: March 14, 2024
    Inventors: Torben Last, Niclas Roxhed, Göran Stemme
  • Publication number: 20240023850
    Abstract: A microneedle (100) for extracting a blood sample from the skin (10) of a mammal subject is disclosed. The microneedle comprises at least one substantially flat blade (110) comprising at least one cutting edge (120a, 120b) configured to incise the skin of the mammal subject, and at least one microchannel (130) comprising an opening (132) and a passage (134). The at least one microchannel is arranged adjacent to the at least one blade and configured to be inserted into the skin of the mammal subject together with the at least one blade. The passage is configured to transport the blood sample away from the opening via capillary action. A device (200) for extracting a blood sample from a mammal subject comprising a microneedle is also disclosed.
    Type: Application
    Filed: October 14, 2021
    Publication date: January 25, 2024
    Inventors: Niclas Roxhed, Mikolaj Dobielewski, Göran Stemme
  • Publication number: 20230279324
    Abstract: The method is for preparing a sample in a microfluidic device. A microfluidic device is provided that has a first reservoir in fluid communication with a second reservoir in fluid communication with and adjacent to a draining unit that has a first absorbing member disposed therein. The first reservoir contains a first liquid that is held in the first reservoir by a capillary stop valve connecting the first and second reservoirs. The second reservoir has a sample support disposed therein. A second liquid, containing substances, is added to the second reservoir. The second liquid contacts the first liquid and the first absorbing member. The first absorbing member absorbs the second liquid and the first liquid. The substances adhere to the sample support.
    Type: Application
    Filed: September 9, 2022
    Publication date: September 7, 2023
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Patent number: 11504959
    Abstract: A method for transferring an atomically thin layer comprising providing a target substrate and a donor substrate on which a first atomically thin layer has been formed. The method further comprises disposing an adhesion layer at the donor substrate or at the target substrate. The method further comprises bringing the target substrate and the donor substrate together. Further, the method comprises bonding together the donor substrate, the adhesion layer and the target substrate and removing the donor substrate.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: November 22, 2022
    Inventors: Arne Quellmalz, Kristinn Gylfason, Niclas Roxhed, Göran Stemme, Frank Niklaus
  • Patent number: 11485945
    Abstract: The method is for preparing a sample in a microfluidic device. A microfluidic device is provided that has a first reservoir in fluid communication with a second reservoir in fluid communication with and adjacent to a draining unit that has a first absorbing member disposed therein. The first reservoir contains a first liquid that is held in the first reservoir by a capillary stop valve connecting the first and second reservoirs. The second reservoir has a sample support disposed therein. A second liquid, containing substances, is added to the second reservoir. The second liquid contacts the first liquid and the first absorbing member. The first absorbing member absorbs the second liquid and the first liquid. The substances adhere to the sample support.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: November 1, 2022
    Assignee: Intelligent Virus Imaging Inc
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Patent number: 11484882
    Abstract: The microfluidic device has a first reservoir that preferably includes a first liquid. The first liquid is being held by a capillary stop valve in the first reservoir. A second reservoir is in fluid communication with the first reservoir. The second reservoir has a second liquid and a sample support disposed therein. The second reservoir has an inlet opening defined therein. A draining unit is adjacent to the second reservoir. The draining unit is in fluid communication with the second reservoir. The draining unit has a first absorption member disposed therein.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: November 1, 2022
    Assignee: Intelligent Virus Imaging Inc.
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Patent number: 11442026
    Abstract: Disclosed is a method of making a crack structure on a substrate, the crack structure being usable as a tunnelling junction structure in a nanogap device, including the controlled fracture or release of a patterned layer under built-in stress, thereby forming elements separated by nanogaps or crack-junctions. The width of the crack-defined nanogap is controlled by locally release-etching the film at a notched bridge patterned in the film. The built-in stress contributes to forming the crack and defining of the width of the crack-defined nanogap. Further, by design of the length of the bridge in a range between sub-??? to >25???, the separation between the elements, defined by the width of the crack-defined nanogaps, can be controlled for each individual crack structure from <2 nm to >100 nm. The nanogaps can be used for tunneling devices in combination with nanopores for DNA, RNA or peptides sequencing.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: September 13, 2022
    Assignee: Zedna AB
    Inventors: Valentin Dubois, Frank Niklaus, Göran Stemme
  • Publication number: 20220250961
    Abstract: The present invention relates to a method for forming a 3D optical component comprising the steps of: forming over a substrate a liquid layer of a polymer in a solvent, drying said polymer for removing at least a portion of said solvent and thereby creating a layer having a first dissolution rate, exposing by multi-photon absorption using an electromagnetic radiation source a predefined volume of said layer, thereby causing the volume to have a second dissolution rate which is different to said first dissolution rate, dissolve the non-exposed areas with a liquid solution for forming the 3D optical component, wherein said polymer is Hydrogen silsesquioxane, HSQ, and said dried layer having a thickness of at least 1 ?m.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Inventors: Po-Han Huang, Göran Stemme, Frank Niklaus, Kristinn B. Gylfason, Miku Laakso, Pierre Edinger, Carlos Errando Herranz, David Emmanuel Marschner, Lee-Lun Lai
  • Publication number: 20220081662
    Abstract: The method is for preparing a sample in a microfluidic device. A microfluidic device is provided that has a first reservoir in fluid communication with a second reservoir in fluid communication with and adjacent to a draining unit that has a first absorbing member disposed therein. The first reservoir contains a first liquid that is held in the first reservoir by a capillary stop valve connecting the first and second reservoirs. The second reservoir has a sample support disposed therein. A second liquid, containing substances, is added to the second reservoir. The second liquid contacts the first liquid and the first absorbing member. The first absorbing member absorbs the second liquid and the first liquid. The substances adhere to the sample support.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 17, 2022
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Publication number: 20220080419
    Abstract: The microfluidic device has a first reservoir that preferably includes a first liquid. The first liquid is being held by a capillary stop valve in the first reservoir. A second reservoir is in fluid communication with the first reservoir. The second reservoir has a second liquid and a sample support disposed therein. The second reservoir has an inlet opening defined therein. A draining unit is adjacent to the second reservoir. The draining unit is in fluid communication with the second reservoir. The draining unit has a first absorption member disposed therein.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Publication number: 20220072241
    Abstract: A spray nozzle chip comprising: a first layer provided with a first layer orifice, and a mechanically flexible nozzle layer provided with a nozzle orifice, wherein the first layer has a valve seat arranged aligned with the nozzle orifice, wherein the spray nozzle chip has a valve functionality obtained by movement of the nozzle layer relative to the valve seat due to pressure changes, and wherein the nozzle layer is arranged at a distance from the valve seat when the nozzle layer is in a default non-pressurised state, whereby a gap with a gap length (L) is formed between the nozzle layer and the valve seat, wherein the gap length (L) is smaller than a dimension of a specific bacterial type, to thereby seal against bacterial ingrowth through the nozzle orifice of the specific bacterial type.
    Type: Application
    Filed: December 27, 2019
    Publication date: March 10, 2022
    Inventors: Niclas Roxhed, Torben Last, Göran Stemme
  • Patent number: 11254488
    Abstract: A spray nozzle chip is presented having: a first layer provided with a first layer orifice, a mechanically flexible nozzle layer provided with a nozzle orifice, the spray nozzle chip having a valve functionality obtained by movement of the nozzle layer relative to the first layer due to pressure changes, wherein the nozzle orifice is closed when the nozzle layer is in a default non-pressurised state and wherein the nozzle orifice is opened and set in fluid communication with the first layer orifice when the nozzle layer is deformed due to pressure during a spraying operation, and wherein the spray nozzle chip further has a sealing layer configured to rupture when the nozzle layer is deformed due to applied pressure during a spraying operation.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: February 22, 2022
    Assignee: SHL MEDICAL AG
    Inventors: Niclas Roxhead, Torben Last, Göran Stemme
  • Patent number: 11000846
    Abstract: A capillary driven microfluidic device with blood plasma separation means that can be used to separate, meter and transfer a blood sample. The blood separation means can be arranged as a capillary pump by the configuration of a porous membrane and the microfluidic device.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: May 11, 2021
    Assignee: CAPITAINER AB
    Inventors: Niclas Roxhed, Göran Stemme, Gabriel Lenk, Wouter Van Der Wijngaart, Jonas Hansson
  • Publication number: 20200385201
    Abstract: A spray nozzle chip is presented having: a first layer provided with a first layer orifice, a mechanically flexible nozzle layer provided with a nozzle orifice, the spray nozzle chip having a valve functionality obtained by movement of the nozzle layer relative to the first layer due to pressure changes, wherein the nozzle orifice is closed when the nozzle layer is in a default non-pressurised state and wherein the nozzle orifice is opened and set in fluid communication with the first layer orifice when the nozzle layer is deformed due to pressure during a spraying operation, and wherein the spray nozzle chip further has a sealing layer configured to rupture when the nozzle layer is deformed due to applied pressure during a spraying operation.
    Type: Application
    Filed: December 5, 2018
    Publication date: December 10, 2020
    Inventors: Niclas Roxhead, Torben Last, Göran Stemme
  • Patent number: 10782249
    Abstract: Disclosed is a method of making a crack structure on a substrate, the crack structure being usable as a tunneling junction structure in a nanogap device, including the controlled fracture or release of a patterned layer under built-in stress, thereby forming elements separated by nanogaps or crack-junctions. The width of the crack-defined nanogap is controlled by locally release-etching the film at a notched bridge patterned in the film. The built-in stress contributes to forming the crack and defining of the width of the crack-defined nanogap. Further, by design of the length of the bridge in a range between sub-??? to >25???, the separation between the elements, defined by the width of the crack-defined nanogaps, can be controlled for each individual crack structure from <2 nm to >100 nm. The nanogaps can be used for tunneling devices in combination with nanopores for DNA, RNA or peptides sequencing.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 22, 2020
    Assignee: ZEDNA AB
    Inventors: Valentin Dubois, Frank Niklaus, Göran Stemme
  • Patent number: 10598590
    Abstract: A sensor device comprising a planar substrate defining a substrate plane and a waveguide for guiding an electromagnetic wave. The waveguide extends in a length direction in a waveguide plane parallel to the substrate plane and has a width and a height wherein the width to height ratio is more than 5. The height of the waveguide is less than the wavelength of the electromagnetic wave. The waveguide is supported on the substrate by a support structure extending from the substrate to the waveguide, along the length direction of the waveguide, having a width which is smaller than the width of the waveguide. The invention further relates to a method of detecting a component in gas and a method of fabricating a sensor device.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: March 24, 2020
    Assignee: Senseair AB
    Inventors: Kristinn B. Gylfason, Hans Sohlström, Floria Ottonello Briano, Göran Stemme
  • Patent number: 10525239
    Abstract: The disclosure relates to a cerebrospinal fluid (CSF) shunt for treatment of hydrocephalus, comprising a valve having an inlet port and an outlet port, which ports are for draining CSF, and a control port for regulating the drainage of CSF through the valve according to a hydrostatic pressure provided to the control port, which hydrostatic pressure is dependent on the body position of the patient. The disclosure further relates to a method for treatment of hydrocephalus comprising regulating drainage of CSF based on a hydrostatic pressure that is dependent on the body position of the patient.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: January 7, 2020
    Inventors: Niclas Roxhed, Staffan Johansson, Göran Stemme, Anders Eklund, Jan Malm
  • Patent number: 10433766
    Abstract: The invention relates to a miniaturised fluid flow regulating device comprising a fluid flow channel with an inlet portion, an outlet portion and a flow regulation passage between the inlet portion and the outlet portion, an elongated beam element arranged in the flow channel, such that a pressure difference over the inlet portion and the outlet portion causes the beam element to bend and regulate fluid flow in the flow regulation passage. The invention further relates to a breath analysis device comprising such a flow regulating device for regulating a flow of exhaled breath.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: October 8, 2019
    Assignee: CIRCASSIA AB
    Inventors: Niclas Roxhed, Göran Stemme, Staffan Johansson
  • Publication number: 20190154570
    Abstract: A sensor device comprising a planar substrate defining a substrate plane and a waveguide for guiding an electromagnetic wave. The waveguide extends in a length direction in a waveguide plane parallel to the substrate plane and has a width and a height wherein the width to height ratio is more than 5. The height of the waveguide is less than the wavelength of the electromagnetic wave. The waveguide is supported on the substrate by a support structure extending from the substrate to the waveguide, along the length direction of the waveguide, having a width which is smaller than the width of the waveguide. The invention further relates to a method of detecting a component in gas and a method of fabricating a sensor device.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 23, 2019
    Inventors: Kristinn B. Gylfason, Hans Sohlström, Floria Ottonello Briano, Göran Stemme
  • Patent number: 10220389
    Abstract: A microfluidic device comprises an inlet port for liquid, and a capillary channel in fluid connection to the inlet port for receiving liquid from the inlet port, the channel having a defined volume. At least one dissolvable valve is provided comprising a dissolvable membrane having a first side oriented towards the capillary channel, and a capillary connected to the second side of the dissolvable membrane such that when the membrane is dissolved by the liquid, liquid is transported through the valve to the second side of the membrane by capillary action. A method of controlling a flow of liquid uses such a microfluidic device.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: March 5, 2019
    Assignee: CAPITAINER AB
    Inventors: Göran Stemme, Gabriel Lenk, Olof Beck, Niclas Roxhed