Patents by Inventor Goran Stemme

Goran Stemme has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240315675
    Abstract: A biopsy device for sampling cells or tissue in a subject, the biopsy device comprising: a tubular member defining a lumen; and an elongated member movably arranged within the lumen of the tubular member, wherein a distal portion of the elongated member comprises a tissue capture arrangement including a plurality of rigid protrusions.
    Type: Application
    Filed: January 18, 2022
    Publication date: September 26, 2024
    Inventors: Mikael SANDELL, Niclas ROXHED, Göran STEMME, Staffan HOLMIN, Stefan JONSSON, Wouter METSOLA VAN DER WIJNGAART
  • Publication number: 20240082857
    Abstract: A method for forming a monolithic swirl nozzle configured to aerosolize a pharmaceutical drug. The swirl nozzle comprises an inlet for receiving the pharmaceutical drug to be aerosolized; a swirl chamber connected to the inlet and configured to aerosolize the pharmaceutical drug provided by the inlet; and an outlet connected to the swirl chamber and configured to discharge the aerosolized pharmaceutical drug. The method comprises providing a photoactivatable material and forming the swirl nozzle by selectively activating voxels in the photoactivatable material.
    Type: Application
    Filed: January 18, 2022
    Publication date: March 14, 2024
    Inventors: Torben Last, Niclas Roxhed, Göran Stemme
  • Publication number: 20240023850
    Abstract: A microneedle (100) for extracting a blood sample from the skin (10) of a mammal subject is disclosed. The microneedle comprises at least one substantially flat blade (110) comprising at least one cutting edge (120a, 120b) configured to incise the skin of the mammal subject, and at least one microchannel (130) comprising an opening (132) and a passage (134). The at least one microchannel is arranged adjacent to the at least one blade and configured to be inserted into the skin of the mammal subject together with the at least one blade. The passage is configured to transport the blood sample away from the opening via capillary action. A device (200) for extracting a blood sample from a mammal subject comprising a microneedle is also disclosed.
    Type: Application
    Filed: October 14, 2021
    Publication date: January 25, 2024
    Inventors: Niclas Roxhed, Mikolaj Dobielewski, Göran Stemme
  • Publication number: 20230279324
    Abstract: The method is for preparing a sample in a microfluidic device. A microfluidic device is provided that has a first reservoir in fluid communication with a second reservoir in fluid communication with and adjacent to a draining unit that has a first absorbing member disposed therein. The first reservoir contains a first liquid that is held in the first reservoir by a capillary stop valve connecting the first and second reservoirs. The second reservoir has a sample support disposed therein. A second liquid, containing substances, is added to the second reservoir. The second liquid contacts the first liquid and the first absorbing member. The first absorbing member absorbs the second liquid and the first liquid. The substances adhere to the sample support.
    Type: Application
    Filed: September 9, 2022
    Publication date: September 7, 2023
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Publication number: 20230077165
    Abstract: A device for extracting an interstitial fluid sample from the skin of a mammal subject is disclosed. The device comprises at least one micro-needle comprising a tip portion configured to be inserted into the skin of the mammal subject, and a passage configured to transport the interstitial fluid from the skin to a retaining material arranged in a channel of a body of the device. The retaining material is fluidically connected to the passage and configured to absorb and store the interstitial fluid sample transported by the passage. A holder configured to receive such a device is also disclosed.
    Type: Application
    Filed: January 22, 2021
    Publication date: March 9, 2023
    Inventors: Niclas ROXHED, Federico RIBET, Göran STEMME
  • Publication number: 20230041785
    Abstract: A microbiopsy device for extracting a tissue sample, the microbiopsy device comprising a main body extending between a distal end and a proximal end and adapted to have or assume a shape of substantially uniform transverse width along the length of the main body, wherein the distal end is arranged to enter tissue; the proximal end comprises a mounting interface adapted for connection with an elongated member, or is integrally formed with a solid elongated member; the transverse width of the main body is smaller than 1 mm; and the main body comprises a recess extending in a longitudinal direction of the main body and defining a cavity arranged to capture tissue therein.
    Type: Application
    Filed: January 4, 2021
    Publication date: February 9, 2023
    Inventors: Niclas ROXHED, Mikael SANDELL, Göran STEMME, Staffan HOLMIN, Stefan JONSSON, Wouter METSOLA VAN DER WIJNGAART
  • Patent number: 11504959
    Abstract: A method for transferring an atomically thin layer comprising providing a target substrate and a donor substrate on which a first atomically thin layer has been formed. The method further comprises disposing an adhesion layer at the donor substrate or at the target substrate. The method further comprises bringing the target substrate and the donor substrate together. Further, the method comprises bonding together the donor substrate, the adhesion layer and the target substrate and removing the donor substrate.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: November 22, 2022
    Inventors: Arne Quellmalz, Kristinn Gylfason, Niclas Roxhed, Göran Stemme, Frank Niklaus
  • Patent number: 11484882
    Abstract: The microfluidic device has a first reservoir that preferably includes a first liquid. The first liquid is being held by a capillary stop valve in the first reservoir. A second reservoir is in fluid communication with the first reservoir. The second reservoir has a second liquid and a sample support disposed therein. The second reservoir has an inlet opening defined therein. A draining unit is adjacent to the second reservoir. The draining unit is in fluid communication with the second reservoir. The draining unit has a first absorption member disposed therein.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: November 1, 2022
    Assignee: Intelligent Virus Imaging Inc.
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Patent number: 11485945
    Abstract: The method is for preparing a sample in a microfluidic device. A microfluidic device is provided that has a first reservoir in fluid communication with a second reservoir in fluid communication with and adjacent to a draining unit that has a first absorbing member disposed therein. The first reservoir contains a first liquid that is held in the first reservoir by a capillary stop valve connecting the first and second reservoirs. The second reservoir has a sample support disposed therein. A second liquid, containing substances, is added to the second reservoir. The second liquid contacts the first liquid and the first absorbing member. The first absorbing member absorbs the second liquid and the first liquid. The substances adhere to the sample support.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: November 1, 2022
    Assignee: Intelligent Virus Imaging Inc
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Publication number: 20220324703
    Abstract: Method and arrangement for assembling one or more microchips (415; 615; 715; 815; 915; 1015) into one or more holes (422; 722), respectively, in a substrate surface (421; 721) of a separate receiving substrate (420; 720; 820; 1020). The holes (422; 722) of the substrate is for microchip insertion out-of-plane in relation to said substrate surface. Each of said microchips is provided with a ferromagnetic layer (213; 613) of ferromagnetic material. The microchips are placed (503) on said substrate surface (421; 721) and it is applied and moved (504) one or more magnetic fields affecting said ferromagnetic layer (213; 613) of each microchip such that the microchips thereby become out-of-plane oriented in relation to said substrate surface (421; 721) and move over the substrate surface (421; 721) until assembled into said holes (422; 722).
    Type: Application
    Filed: September 10, 2020
    Publication date: October 13, 2022
    Inventors: Federico RIBET, Miku BRODIN-LAAKSO, Simone PAGLIANO, Frank NIKLAUS, Niclas ROXHED, Göran STEMME
  • Patent number: 11442026
    Abstract: Disclosed is a method of making a crack structure on a substrate, the crack structure being usable as a tunnelling junction structure in a nanogap device, including the controlled fracture or release of a patterned layer under built-in stress, thereby forming elements separated by nanogaps or crack-junctions. The width of the crack-defined nanogap is controlled by locally release-etching the film at a notched bridge patterned in the film. The built-in stress contributes to forming the crack and defining of the width of the crack-defined nanogap. Further, by design of the length of the bridge in a range between sub-??? to >25???, the separation between the elements, defined by the width of the crack-defined nanogaps, can be controlled for each individual crack structure from <2 nm to >100 nm. The nanogaps can be used for tunneling devices in combination with nanopores for DNA, RNA or peptides sequencing.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: September 13, 2022
    Assignee: Zedna AB
    Inventors: Valentin Dubois, Frank Niklaus, Göran Stemme
  • Publication number: 20220250961
    Abstract: The present invention relates to a method for forming a 3D optical component comprising the steps of: forming over a substrate a liquid layer of a polymer in a solvent, drying said polymer for removing at least a portion of said solvent and thereby creating a layer having a first dissolution rate, exposing by multi-photon absorption using an electromagnetic radiation source a predefined volume of said layer, thereby causing the volume to have a second dissolution rate which is different to said first dissolution rate, dissolve the non-exposed areas with a liquid solution for forming the 3D optical component, wherein said polymer is Hydrogen silsesquioxane, HSQ, and said dried layer having a thickness of at least 1 ?m.
    Type: Application
    Filed: February 9, 2021
    Publication date: August 11, 2022
    Inventors: Po-Han Huang, Göran Stemme, Frank Niklaus, Kristinn B. Gylfason, Miku Laakso, Pierre Edinger, Carlos Errando Herranz, David Emmanuel Marschner, Lee-Lun Lai
  • Publication number: 20220161537
    Abstract: A method for transferring an atomically thin layer comprising providing a target substrate and a donor substrate on which a first atomically thin layer has been formed. The method further comprises disposing an adhesion layer at the donor substrate or at the target substrate. The method further comprises bringing the target substrate and the donor substrate together. Further, the method comprises bonding together the donor substrate, the adhesion layer and the target substrate and removing the donor substrate.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 26, 2022
    Inventors: Ame QUELLMALZ, Niclas ROXHED, Kristinn GYLFASON, Göran STEMME, Frank NIKLAUS
  • Publication number: 20220081662
    Abstract: The method is for preparing a sample in a microfluidic device. A microfluidic device is provided that has a first reservoir in fluid communication with a second reservoir in fluid communication with and adjacent to a draining unit that has a first absorbing member disposed therein. The first reservoir contains a first liquid that is held in the first reservoir by a capillary stop valve connecting the first and second reservoirs. The second reservoir has a sample support disposed therein. A second liquid, containing substances, is added to the second reservoir. The second liquid contacts the first liquid and the first absorbing member. The first absorbing member absorbs the second liquid and the first liquid. The substances adhere to the sample support.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 17, 2022
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Publication number: 20220080419
    Abstract: The microfluidic device has a first reservoir that preferably includes a first liquid. The first liquid is being held by a capillary stop valve in the first reservoir. A second reservoir is in fluid communication with the first reservoir. The second reservoir has a second liquid and a sample support disposed therein. The second reservoir has an inlet opening defined therein. A draining unit is adjacent to the second reservoir. The draining unit is in fluid communication with the second reservoir. The draining unit has a first absorption member disposed therein.
    Type: Application
    Filed: September 17, 2020
    Publication date: March 17, 2022
    Inventors: Janosch Hauser, Gustaf Kylberg, Göran Stemme, Ida-Maria Sintorn, Niclas Roxhed
  • Publication number: 20220072241
    Abstract: A spray nozzle chip comprising: a first layer provided with a first layer orifice, and a mechanically flexible nozzle layer provided with a nozzle orifice, wherein the first layer has a valve seat arranged aligned with the nozzle orifice, wherein the spray nozzle chip has a valve functionality obtained by movement of the nozzle layer relative to the valve seat due to pressure changes, and wherein the nozzle layer is arranged at a distance from the valve seat when the nozzle layer is in a default non-pressurised state, whereby a gap with a gap length (L) is formed between the nozzle layer and the valve seat, wherein the gap length (L) is smaller than a dimension of a specific bacterial type, to thereby seal against bacterial ingrowth through the nozzle orifice of the specific bacterial type.
    Type: Application
    Filed: December 27, 2019
    Publication date: March 10, 2022
    Inventors: Niclas Roxhed, Torben Last, Göran Stemme
  • Patent number: 11254488
    Abstract: A spray nozzle chip is presented having: a first layer provided with a first layer orifice, a mechanically flexible nozzle layer provided with a nozzle orifice, the spray nozzle chip having a valve functionality obtained by movement of the nozzle layer relative to the first layer due to pressure changes, wherein the nozzle orifice is closed when the nozzle layer is in a default non-pressurised state and wherein the nozzle orifice is opened and set in fluid communication with the first layer orifice when the nozzle layer is deformed due to pressure during a spraying operation, and wherein the spray nozzle chip further has a sealing layer configured to rupture when the nozzle layer is deformed due to applied pressure during a spraying operation.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: February 22, 2022
    Assignee: SHL MEDICAL AG
    Inventors: Niclas Roxhead, Torben Last, Göran Stemme
  • Publication number: 20210396733
    Abstract: A layered nanostructure including a crack-forming layer with a first notch and a second notch provided in the crack-forming layer and the first notch is disclosed. A nanocrack is provided between the first notch and the second notch. Strain release in the tensilly stressed crack-forming layer is utilized in the layered nanostructure so that the nanocrack is very uniformed and well controlled with a width that may be below 10 nm. Nanopore devices including crossing nanocracks may be provided.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 23, 2021
    Applicant: Zedna AB
    Inventors: Valentin DUBOIS, Niklaus FRANK, Göran STEMME
  • Publication number: 20210316300
    Abstract: Disclosed herein is a microfluidic device and a method for transporting and sampling a defined volume of plasma, providing a fluid passageway from an inlet to an outlet comprising a first region with the inlet with a first high flow resistance configured to receive and collect a whole blood sample and to separate plasma; and a second region with the outlet lower flow resistance. The second region is in fluid connection with the first region and configured to meter the separated plasma by comprising a metering channel.
    Type: Application
    Filed: September 5, 2019
    Publication date: October 14, 2021
    Inventors: Anna OHLANDER, Hans Peter STARCK-JOHNSON, Janosch HAUSER, Göran STEMME, Niclas ROXHED
  • Publication number: 20210260579
    Abstract: A capillary driven microfluidic device with blood plasma separation means that can be used to separate, meter and transfer a blood sample. The blood separation means can be arranged as a capillary pump by the configuration of a porous membrane and the microfluidic device.
    Type: Application
    Filed: May 10, 2021
    Publication date: August 26, 2021
    Inventors: Niclas ROXHED, Göran STEMME, Gabriel LENK, Wouter VAN DER WIJNGAART, Jonas HANSSON