Patents by Inventor Gordon D. DeMeester

Gordon D. DeMeester has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7276906
    Abstract: A gradient coil for a magnetic resonance imaging apparatus (10) includes a primary coil (16) defining an inner cylindrical surface (60), and shield coil (18) or coils defining a coaxial outer cylindrical surface (62). Coil jumps (74)connect the primary and shield coils (16, 18). The coil jumps (74) define a non-planar current-sharing surface (64) extending between inner and outer contours (66, 68) that coincide with the inner and outer cylindrical surfaces (60, 62), respectively. The coil (16, 18, 74) defines a current path that passes across the current sharing surface (64) between the inner and outer contours (66, 68) a plurality of times. Optionally, some primary coil turns (70) are electrically interconnected to define an isolated primary sub coil (P2) that together with a second shield (S2, S2?, S2?) enables a discretely or continuously selectable field of view.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: October 2, 2007
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Shmaryu M. Shvartsman, Michael A. Morich, Gordon D. DeMeester
  • Patent number: 6922580
    Abstract: A magnetic resonance imaging method and apparatus includes a navigator region defined within the subject by selective excitation. Blood flow is measured within the selected region using the principles of phase contrast MR angiography. A cardiac cycle plot is constructed from Fourier transformed data that represents measured velocity of blood flow through the navigator region as a function of time. On the basis of the cardiac cycle plot and the navigator measurements, data acquisition is synchronized or gated to portions of the cardiac cycle.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: July 26, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Gordon D. DeMeester, Kecheng Liu
  • Patent number: 6836119
    Abstract: In a method for aligning a magnetic field-modifying structure (74) in a magnet bore (12) of a magnetic resonance imaging scanner (8), a reference magnetic field map of the magnet bore (12) is measured without the magnetic field-modifying structure (74) inserted. The magnetic field-modifying structure (74) is inserted into the magnet bore (12). A second magnetic field map of the magnetic bore (12) is measured with the magnetic field-modifying structure (74) inserted. At least one odd harmonic component of the first and second magnetic field maps is extracted. The magnetic field-modifying structure (74) is aligned in the magnet bore (12) based on a comparison of the odd harmonic component of the first and second magnetic field maps.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: December 28, 2004
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Gordon D. DeMeester, Michael A. Morich, John V. M. McGinley, Gerardus B. J. Mulder
  • Publication number: 20040070396
    Abstract: In a method for aligning a magnetic field-modifying structure (74) in a magnet bore (12) of a magnetic resonance imaging scanner (8), a reference magnetic field map of the magnet bore (12) is measured without the magnetic field-modifying structure (74) inserted. The magnetic field-modifying structure (74) is inserted into the magnet bore (12). A second magnetic field map of the magnetic bore (12) is measured with the magnetic field-modifying structure (74) inserted. At least one odd harmonic component of the first and second magnetic field maps is extracted. The magnetic field-modifying structure (74) is aligned in the magnet bore (12) based on a comparison of the odd harmonic component of the first and second magnetic field maps.
    Type: Application
    Filed: October 15, 2002
    Publication date: April 15, 2004
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Gordon D. DeMeester, Michael A. Morich, John V.M. McGinley, Gerardus B.J. Mulder
  • Publication number: 20030225328
    Abstract: A magnetic resonance imaging method and apparatus includes a navigator region defined within the subject by selective excitation. Blood flow is measured within the selected region using the principles of phase contrast MR angiography. A cardiac cycle plot is constructed from Fourier transformed data that represents measured velocity of blood flow through the navigator region as a function of time. On the basis of the cardiac cycle plot and the navigator measurements, data acquisition is synchronized or gated to portions of the cardiac cycle.
    Type: Application
    Filed: June 4, 2002
    Publication date: December 4, 2003
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Gordon D. DeMeester, Kecheng Liu
  • Patent number: 6594516
    Abstract: An open MRI or other diagnostic imaging system (A) generates a three-dimensional diagnostic image representation, which is stored in an MRI image memory (26). A laser scanner or other surface imaging system (B) generates a volumetric surface image representation that is stored in a surface image memory (34). Typically, the volume and surface images are misaligned and the magnetic resonance image may have predictable distortions. An image correlating system (C) determines offset, scaling, rotational, and non-linear corrections to the magnetic resonance image representation, which are implemented by an image correction processor (48). The corrected magnetic resonance image representation and the surface image representation are combined (50) and stored in a superimposed image memory (52). A video processor (54) generates image representations from selected portions of the superimposed image representation for display on a human-readable monitor (56).
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: July 15, 2003
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: C. Michael Steckner, Jarmo O. Ruohonen, Gordon D. DeMeester, Robert K. Carlson
  • Patent number: 6552538
    Abstract: A pair of quadrature radio frequency coils (32, 34) disposed adjacent an imaging region (10) are typically loaded differently due to factors such as subject geometry, subject mass, and a relative distance from the subject. A tip angle adjustment circuit (50) monitors a combined tip angle adjacent a mid-plane of the examination region, such as by analyzing delivered and reflected power to each of the coils. An adjustment circuit (54) adjusts relative RF power or amplitude to produce a selected, combined tip angle in the examination region.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: April 22, 2003
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Gordon D. DeMeester, Michael Burl, Michael A. Morich
  • Patent number: 6479999
    Abstract: A gradient coil assembly generates magnetic field gradients across the main magnetic field of a magnetic resonance imaging apparatus and includes a primary gradient coil (22p) switchable between a first configuration which generates magnetic field gradients which are substantially linear over a first useful imaging volume, and a second configuration which generates magnetic field gradients which are substantially linear over a second useful imaging volume. A first shield coil set (22s1) is complimentary to the primary gradient coil in one of the first and second configurations, and a second shield coil set (22s2), when either used alone or in combination with the first shield coil, is complimentary to the other of the first and second configurations.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: November 12, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Gordon D. DeMeester, Michael A. Morich, Shmaryu M. Shvartsman
  • Publication number: 20020149365
    Abstract: A pair of quadrature radio frequency coils (32, 34) disposed adjacent an imaging region (10) are typically loaded differently due to factors such as subject geometry, subject mass, and a relative distance from the subject. A tip angle adjustment circuit (50) monitors a combined tip angle adjacent a mid-plane of the examination region, such as by analyzing delivered and reflected power to each of the coils. An adjustment circuit (54) adjusts relative RF power or amplitude to produce a selected, combined tip angle in the examination region.
    Type: Application
    Filed: April 11, 2001
    Publication date: October 17, 2002
    Applicant: MARCONI MEDICAL SYSTEMS, INC.
    Inventors: Gordon D. DeMeester, Michael Burl, Michael A. Morich
  • Patent number: 6448770
    Abstract: A method of magnetic resonance imaging includes supporting a subject in an examination region of an MRI scanner(A). An MRI pulse sequence is applied to produce a detectable magnetic resonance signal (100) in a selected region of the subject. The magnetic resonance signal (100) includes a plurality of echos (102a-h) which are received. The plurality of received echos (102a-h) are subjected to a controllable gain factor such that at least two echos are subjected to different gain factors. In this manner, for example, a multi-contrast acquisition and imaging experiment may be achieved with each set of acquired echos and/or each image having a separately optimized (e.g., optimized for SNR considerations) gain factor individually selected and/or set therefor.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: September 10, 2002
    Assignee: Koninklijke Philips Electronics, N.V.
    Inventors: Kecheng Liu, Gordon D. DeMeester, Michael Burl
  • Patent number: 6441615
    Abstract: A crossed-ladder RF coil assembly (48) is employed for quadrature excitation and/or reception in an open or vertical field magnetic resonance apparatus. The RF coil assembly (48, 70, 90) includes a pair of coil assemblies (50, 52; 70, 72; 100, 102) which are disposed in a parallel relationship. Coil arrays (50, 52; 100, 102) include at least two ladder RF coils (501, 502, 503; 521, 522, 523; 1001 . . . , 1008; 1021, . . . , 1028) which are disposed in an overlapping relationship and are rotated by 90° relative to one another. Each ladder RF coil of one coil array is rotated by 90° relative to adjoining ladder coils and each corresponding ladder RF coil of the other coil array. The crossed-ladder RF coil assembly provides better B1 field uniformity and elongated anatomical coverage for spine and neck imaging. In addition, the RF coil assembly reduces noise from the body at higher fields in vertical field magnetic resonance systems.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: August 27, 2002
    Assignee: Koninklijke Philips Electronics, NV
    Inventors: Hiroyuki Fujita, Gordon D. DeMeester, Michael A. Morich
  • Patent number: 6404199
    Abstract: A quadrature RF coil assembly (48) is employed for quadrature excitation and/or reception in an open or vertical field magnetic resonance apparatus. The quadrature RF coil (48) includes a plurality of parallel rung elements (70, 72, 74, 76, 78). A pair of electrical conductive end segments (80, 82) connect the plurality of rung elements. Capacitive elements (CV, CA) interrupt a central rung element and the end segments. Preferably, the capacitive elements (CV, CA) are arranged in a high-pass configuration such that the two highest resonant modes, an odd mode (90) and an even mode (92), are tuned to have peak responsivity to a common imaging frequency. The odd mode (90) is responsive to magnetic fields which are normal to the coil (48), while the even mode is responsive to magnetic fields which are parallel to the coil (48) and perpendicular to the main magnetic field.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: June 11, 2002
    Assignee: Philips Medical Systems (Cleveland), Inc.
    Inventors: Hiroyuki Fujita, Gordon D. DeMeester
  • Patent number: 6316941
    Abstract: A tunable radio frequency birdcage coil (30) is oriented vertically in a bore-type magnetic resonance apparatus. The birdcage coil (30) includes a pair of end rings (60, 62) disposed in parallel planes along a coil axis which is orthogonal to the main magnetic field. A plurality of rungs (64) electrically interconnect the end rings (60, 62) to form a generally cylindrical volume. The end rings (60, 62) and rungs (64) are mounted on a hinged (68) dielectric former (66). Conductive connectors (70) releasably fasten the end rings (60, 62) so that the coil (30) may be opened and closed to receive a portion of a subject to be examined. A conductive loop (80) is inductively coupled and positioned parallel to the end rings (60, 62). The conductive loop (80) is slidably adjustable along the coil axis for matching and tuning end-ring modes of the coil. The coil is oriented to provide a subject disposed therein with an open view for fMRI applications.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: November 13, 2001
    Assignee: Marconi Medical Systems, Inc.
    Inventors: Hiroyuki Fujita, Gordon D. DeMeester, William O. Braum
  • Patent number: 6218838
    Abstract: A pair of annular magnets (10) generate a vertical magnetic flux field through an imaging volume (12). The flux is focused by a pair of Rose rings (26) of high cobalt steel. A high order shim set includes a plurality of permanently magnetized or magnetized iron rings (32a, 32b, 32c, 32d) which cooperatively interact with the magnet assembly to optimize the homogeneity of the magnetic flux through the imaging volume. One of the permanent magnetic rings (32d), is mounted with an opposite polarity relative to the others. The magnetized rings are mounted in a non-ferrous, electrically insulating support structure (34) such that gradient coils (50) can be positioned behind the permanent magnet rings. A flux return path (14, 16, 18, 20, 22, 24) provides a low flux resistant path from adjacent the Rose ring at one side of the imaging volume remotely around the imaging volume to a position adjacent the Rose ring at the other side of the imaging volume.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: April 17, 2001
    Assignee: Picker International, Inc.
    Inventors: John V. M. McGinley, Ian R. Young, Gordon D. DeMeester, Ilmari Kinanen
  • Patent number: 6208144
    Abstract: A region of interest of a subject (20) on a subject support (18) is positioned above a ferrous pedestal (16, 116) that is supported on a ferrous floor yoke portion (76, 176). A lower imaging coil assembly (50) including a lower gradient coil (52), a radio frequency coil (54), and a lower pole piece (58) are disposed between the pedestal and a region of interest of the subject. An upper imaging coil assembly (40) including an annular gradient coil (42, 142) and an upper annular pole piece (44, 144) is supported from a ceiling ferrous yoke member (74, 174). The upper imaging coil assembly is supported by supports (70, 170) which are moved by drives (72, 78, 172) to raise and lower the upper imaging coil assembly. A laser gauging system (80, 180) gauges the position of the upper imaging coil assembly such that, with a control circuit (82), the upper imaging coil assembly is accurately repositioned at preselected imaging positions.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: March 27, 2001
    Assignee: Picker International, Inc.
    Inventors: John V. M. McGinley, Ian R. Young, Gordon D. DeMeester
  • Patent number: 6147495
    Abstract: A magnetic resonance imaging scanner includes a pair of opposing pole pieces (20, 20') disposed symmetrically about an imaging volume (24) facing one another. The pair of opposing pole pieces (20, 20') includes a first ferrous pole piece (20) which has a front side (22) facing the imaging volume (24) and a back side (28). Also included is a second ferrous pole piece (20') which also has a front side (22) facing the imaging volume (24) and a back side (28). A magnetic flux return path (30) extends, remotely from the imaging volume (24), between a point adjacent the back side 28 of the first pole piece (20) and a point adjacent the back side 28' of the second pole piece (20)'. A source of magnetic flux generates a magnetic flux through the imaging volume (24), the pair of opposing pole pieces (20, 20'), and the magnetic flux return path (30). An array of annular hoops (40) and (40') are integrated with the pair of opposing pole pieces (20, 20') for homogenizing the magnetic flux through the imaging volume (24).
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: November 14, 2000
    Assignee: Picker International, Inc.
    Inventors: Gordon D. DeMeester, John V. M. McGinley, Ian R. Young
  • Patent number: 6104192
    Abstract: A magnetic resonance imaging suite is sheathed with plates (32, 34, 36) of iron or other ferrous material. The plates define projections (42, 44, 54, 54', 68) in alignment with each other on opposite ceiling and floor or wall surfaces. A pair of magnetic pole pieces (10, 10'; 50, 50'; 60, 60') are surrounded by superconducting electromagnetic coils (12, 12'; 52, 52'; 62, 62'). The pole pieces are positioned between the ferrous plates in axial alignment. When current flows through the electromagnetic coils, magnetic flux flows between the pole pieces. The ferrous wall sheathing or other ferrous constructions define a flux return path. The pole pieces are magnetically attracted toward each other and are each magnetically mirrored in and attracted toward the adjacent ferrous flux return path.
    Type: Grant
    Filed: May 4, 1999
    Date of Patent: August 15, 2000
    Assignee: Picker Nordstar Corporation
    Inventors: Gosta Jakob Ehnholm, Ilmari Kinanen, Robert G. Gylling, Ian R. Young, Gordon D. DeMeester
  • Patent number: 6100695
    Abstract: A localized shim coil (34) for use in a magnetic resonance imaging system includes a plurality of conductive elements (22a-d). The plurality of conductive elements (62a-d) are connected to a current source (64). The plurality of conductive elements (62a-d) are arranged adjacent to a localized region of a subject being imaged such that current flowing through the conductive elements generates a localized magnetic field. A plurality of series connected choke and resister pairs (66a-d) and (68a-d), respectively, are connected to the plurality of conductive elements (62a-d). The chokes (66a-d) present high impedance to currents having frequencies substantially the same as a resonant frequency of the magnetic resonance imaging system. The resisters (68a-d) balance the current flowing through each conductive element (62a-d).
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: August 8, 2000
    Assignee: Picker International, Inc.
    Inventors: Gordon D. DeMeester, Michael A. Morich
  • Patent number: 6097187
    Abstract: Primary superconducting coils (50) generate a magnetic field through an examination region (10). Stabilizing coils (70) are magnetically coupled with the magnetic field generated by the primary coils. A primary persistence switch (60) and a stabilizing coils persistence switch (72) are opened when the primary coils are connected to a current source (62) to ramp-up the magnetic field. The persistence switches are closed, disconnecting the primary coils from the current source and connecting the primary coils and the stabilizing coils into closed loops. As the magnetic flux generated by the primary coils fluctuates as the primary coils stabilize, the changing flux induces currents in the stabilizing coils. The currents induced in the stabilizing coils generate an offsetting magnetic flux such that the net magnetic flux generated by the primary and stabilizing coils is held constant.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: August 1, 2000
    Assignee: Picker International, Inc.
    Inventors: Vishnu Srivastava, Gordon D. DeMeester, Michael A. Morich
  • Patent number: 6029081
    Abstract: A magnetic resonance imaging apparatus (10) includes a couch (54) for supporting a region of interest of a subject (44) being examined in an examination region. A main magnet for generating a substantially uniform temporally constant main magnetic field through the examination region includes a stationary pole piece (24), a movable pole piece (22), a ferrous flux return path (26), and a magnetic flux generator that selectively generates magnetic flux that flows between the pole pieces (22, 24) through the examination region and through the ferrous flux return path (26) which connects the pole pieces (22, 24). The stationary pole piece (24) is arranged adjacent a first side of the examination region.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: February 22, 2000
    Assignee: Picker International, Inc.
    Inventors: Gordon D. DeMeester, Ian R. Young