Patents by Inventor Goutam Chattopadhyay
Goutam Chattopadhyay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240345150Abstract: A variable temperature load (VTL) or noise source including a grounded coplanar waveguide (GCPW) comprising a first metallization patterned on a fused quartz substrate, the first metallization comprising a first end for connecting to a coaxial connector and a second end for connecting to a coplanar waveguide (CPW); the CPW coupled to a 50 ohm termination and comprising a second metallization patterned on a top surface of a crystal quartz substrate; a temperature sensing diode thermally coupled to the crystal quartz substrate and the second metallization; and a heater resistor coupled to the crystal quartz substrate via contact metallization.Type: ApplicationFiled: April 10, 2024Publication date: October 17, 2024Applicant: California Institute of TechnologyInventors: Jacob W. Kooi, Goutam Chattopadhyay, Austin Minnich
-
Patent number: 12113259Abstract: Low-loss terahertz switches with nanometer resolution positioning and feedback are disclosed. In one embodiment, the switch uses a U-bend waveguide surrounded by an electromagnetic band gap and is implemented in a fully metal-machined fashion in combination with a piezo-electric motor and an optical linear encoder. In another embodiment, the switch comprises a MEMS device.Type: GrantFiled: June 21, 2022Date of Patent: October 8, 2024Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Goutam Chattopadhyay, Robert H. Lin, Sven L. Van Berkel, Sofia Rahiminejad
-
Publication number: 20240170849Abstract: A multi-band metasurface antenna is described. The antenna includes a plurality of stacked metasurface layers for operation according to a respective plurality of separate and distant frequencies. Each metasurface layer presents a high impedance at frequencies that are different from the respective frequency. The metasurface layers are stacked according to a decreasing order of the respective frequencies, with the highest frequency closer to a bottom ground layer of the stack. The metasurface layers are separated by dielectric layers of equal permittivity. According to one aspect, the antenna includes two metasurface layers for respective operation according to a Ka-band and a W-band. According to another aspect, the antenna includes an integrated feed structure that includes respective inner conductors vertically arranged through the dielectric layers to make contact with respective feeder extensions that are in contact with the respective metasurface layers.Type: ApplicationFiled: November 20, 2023Publication date: May 23, 2024Inventors: Nacer E. CHAHAT, Goutam CHATTOPADHYAY, Mario Junior MENCAGLI, Kristy HECHT
-
Publication number: 20240014568Abstract: A metal-only flat metasurface antenna is described. The antenna includes a pillbox beamformer combined with a metasurface structure provided by an array of non-resonant subwavelength unit elements having opening sizes that are strictly smaller than half of the guided-mode wavelength. The pillbox beamformer includes bottom and top parallel plate waveguides (PWPs) forming respective bottom and top cavities for propagation of the guided-mode. Bottom, middle and top metal plates form the two PWPs. Arranged at one end of the bottom and top PWPs is a respective parabolic structure. An all-metal horn structure is centrally arranged at a second end of the bottom PWP opposite the parabolic structure. According to one aspect, the horn structure includes a single feed port arranged at a focal point of the parabolic structure. According to another aspect, the horn structure includes two feed ports arranged at an offset of the focal point.Type: ApplicationFiled: July 6, 2023Publication date: January 11, 2024Inventors: Nacer E. CHAHAT, Gaurangi GUPTA, John L. WOLFF, Adrian J. TANG, Goutam CHATTOPADHYAY
-
Patent number: 11824247Abstract: A set of antenna geometries for use in integrated arrays at terahertz frequencies are described. Two fabrication techniques to construct such antennas are presented. The first technique uses an advanced laser micro-fabrication, allowing fabricating advanced 3D geometries. The second technique uses photolithographic processes, allowing the fabrication of arrays on a single wafer in parallel.Type: GrantFiled: May 19, 2020Date of Patent: November 21, 2023Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Goutam Chattopadhyay, Imran Mehdi, Choonsup Lee, John J. Gill, Cecile D. Jung-Kubiak, Nuria Llombart
-
Patent number: 11764450Abstract: A phase shifter comprising an actuator coupled to a dielectric. When the dielectric is inserted into the waveguide in response to actuation by the actuator, the phase velocity of the incoming electromagnetic wave is decreased, resulting in a phase shift of the electromagnetic wave. A desired phase shift and a low insertion loss can be controlled by positioning of the dielectric and engineering the permittivity of the dielectric.Type: GrantFiled: July 7, 2020Date of Patent: September 19, 2023Assignee: California Institute of TechnologyInventors: Sofia Rahiminejad, Maria A. Del Pino, Cecile D. Jung-Kubiak, Theodore J. Reck, Goutam Chattopadhyay
-
Publication number: 20230027356Abstract: Low-loss terahertz switches with nanometer resolution positioning and feedback are disclosed. In one embodiment, the switch uses a U-bend waveguide surrounded by an electromagnetic band gap and is implemented in a fully metal-machined fashion in combination with a piezo-electric motor and an optical linear encoder. In another embodiment, the switch comprises a MEMS device.Type: ApplicationFiled: June 21, 2022Publication date: January 26, 2023Applicant: California Institute of TechnologyInventors: Goutam Chattopadhyay, Robert H. Lin, Sven L. Van Berkel, Sofia Rahiminejad
-
Publication number: 20220407200Abstract: A waveguide based variable attenuator device including one or more attenuators each including a porous dielectric material; and a metal coating on the top of the dielectric material; and an actuator coupled to the attenuator. The actuator is configured to position, with nanometer resolution, the one or more attenuators in a waveguide configured and dimensioned to guide an electromagnetic wave having a frequency in a range of 100 gigahertz (GHz) to 1 terahertz (THz). The actuator controls at least one of a position or a volume of the one attenuator inserted in the waveguide to achieve a variable or pre-determined attenuation of the electromagnetic wave transmitted through waveguide.Type: ApplicationFiled: June 22, 2022Publication date: December 22, 2022Applicant: California Institute of TechnologyInventors: Goutam Chattopadhyay, Jacob W. Kooi, Choonsup Lee, Sofia Rahiminejad, Subash Khanal
-
Publication number: 20220267140Abstract: A phased array system comprising an array of antennas outputting or receiving electromagnetic radiation to or from a steerable direction, wherein the electromagnetic radiation is at submillimeter wavelengths. The system further comprises a plurality of waveguides outputting or receiving the signals to or from the antennas, each of the waveguides with individual phase tuning. The waveguides are configured and dimensioned to guide an electromagnetic wave comprising the signals having a frequency in a range of 100 gigahertz (GHz) to 1000 terahertz (THz). The system further comprises means for phase shifting the signal by means of shifting or varying one or more phases of the signals relative to one another so as to vary, steer, or scan a direction of the electromagnetic radiation.Type: ApplicationFiled: February 18, 2022Publication date: August 25, 2022Applicant: California Institute of TechnologyInventors: Goutam Chattopadhyay, Cecile D. Jung-Kubiak, Sofia Rahiminejad, Subash Khanal, Sven L. Van Berkel
-
Publication number: 20210013569Abstract: A phase shifter comprising an actuator coupled to a dielectric. When the dielectric is inserted into the waveguide in response to actuation by the actuator, the phase velocity of the incoming electromagnetic wave is decreased, resulting in a phase shift of the electromagnetic wave. A desired phase shift and a low insertion loss can be controlled by positioning of the dielectric and engineering the permittivity of the dielectric.Type: ApplicationFiled: July 7, 2020Publication date: January 14, 2021Applicant: California Institute of TechnologyInventors: Sofia Rahiminejad, Maria A. Del Pino, Cecile D. Jung-Kubiak, Theodore J. Reck, Goutam Chattopadhyay
-
Publication number: 20200313271Abstract: A set of antenna geometries for use in integrated arrays at terahertz frequencies are described. Two fabrication techniques to construct such antennas are presented. The first technique uses an advanced laser micro-fabrication, allowing fabricating advanced 3D geometries. The second technique uses photolithographic processes, allowing the fabrication of arrays on a single wafer in parallel.Type: ApplicationFiled: May 19, 2020Publication date: October 1, 2020Applicant: California Institute of TechnologyInventors: Goutam Chattopadhyay, Imran Mehdi, Choonsup Lee, John J. Gill, Cecile D. Jung-Kubiak, Nuria Llombart
-
Patent number: 10693210Abstract: A set of antenna geometries for use in integrated arrays at terahertz frequencies are described. Two fabrication techniques to construct such antennas are presented. The first technique uses an advanced laser micro-fabrication, allowing fabricating advanced 3D geometries. The second technique uses photolithographic processes, allowing the fabrication of arrays on a single wafer in parallel.Type: GrantFiled: April 24, 2013Date of Patent: June 23, 2020Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Goutam Chattopadhyay, Imran Mehdi, Choonsup Lee, John J. Gill, Cecile D. Jung-Kubiak, Nuria Llombart
-
Patent number: 10418721Abstract: A modulated MTS antenna including a metasurface fabricated from metallized cylinders on a ground plane. The antenna structure can be designed to operate in the Gigahertz or Terahertz frequency band and to have a well defined directivity. The MTS antenna may be micromachined out of a silicon wafer using deep reactive ion etching (DRIE).Type: GrantFiled: March 29, 2017Date of Patent: September 17, 2019Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Goutam Chattopadhyay, Cecile D. Jung-Kubiak, Theodore J. Reck, David Gonzalez-Ovejero, Maria Alonso delPino
-
Patent number: 10100858Abstract: A silicon alignment pin is used to align successive layer of component made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.Type: GrantFiled: October 28, 2016Date of Patent: October 16, 2018Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
-
Patent number: 10075151Abstract: A solid state device chip including diodes (generating a higher frequency output through frequency multiplication of the input frequency) and a novel on-chip power combining design. Together with the on-chip power combining, the chip has increased efficiency because the diodes' anodes, being micro-fabricated simultaneously on the same patch of a GaAs wafer under identical conditions, are very well balanced. The diodes' GaAs heterostructure and the overall chip geometry are designed to be optimized for high power operation. As a result of all these features, the device can generate record-setting power having a signal frequency in the F-band and W-band (30% conversion efficiency).Type: GrantFiled: November 25, 2015Date of Patent: September 11, 2018Assignee: California Institute of TechnologyInventors: Jose Vicente Siles Perez, Choonsup Lee, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi, Robert H. Lin, Alejandro Peralta
-
Patent number: 9791321Abstract: A multi-pixel terahertz transceiver is constructed using a stack of semiconductor layers that communicate using vias defined within the semiconductor layers. By using a stack of semiconductor layers, the various electrical functions of each layer can be tested easily without having to assemble the entire transceiver. In addition, the design allows the production of a transceiver having pixels set 10 mm apart.Type: GrantFiled: May 24, 2013Date of Patent: October 17, 2017Assignee: California Institute of TechnologyInventors: Goutam Chattopadhyay, Ken B. Cooper, Emmanuel Decrossas, John J. Gill, Cecile Jung-Kubiak, Choonsup Lee, Robert Lin, Imran Mehdi, Alejandro Peralta, Theodore Reck, Jose Siles
-
Publication number: 20170288316Abstract: A modulated MTS antenna including a metasurface fabricated from metallized cylinders on a ground plane. The antenna structure can be designed to operate in the Gigahertz or Terahertz frequency band and to have a well defined directivity. The MTS antenna may be micromachined out of a silicon wafer using deep reactive ion etching (DRIE).Type: ApplicationFiled: March 29, 2017Publication date: October 5, 2017Applicant: California Institute of TechnologyInventors: Goutam Chattopadhyay, Cecile D. Jung-Kubiak, Theodore J. Reck, David Gonzalez-Ovejero, Maria Alonso delPino
-
Publication number: 20170045065Abstract: A silicon alignment pin is used to align successive layer of component made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.Type: ApplicationFiled: October 28, 2016Publication date: February 16, 2017Inventors: Cecile JUNG-KUBIAK, Theodore RECK, Bertrand THOMAS, Robert H. LIN, Alejandro PERALTA, John J. GILL, Choonsup LEE, Jose V. SILES, Risaku TODA, Goutam CHATTOPADHYAY, Ken B. COOPER, Imran MEHDI
-
Patent number: 9512863Abstract: A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.Type: GrantFiled: April 26, 2013Date of Patent: December 6, 2016Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGYInventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
-
Patent number: 9478843Abstract: A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90°). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.Type: GrantFiled: February 19, 2015Date of Patent: October 25, 2016Assignee: California Institute of TechnologyInventors: Adrian Joseph Tang, Goutam Chattopadhyay, Nacer E. Chahat, Emmanuel Decrossas