Patents by Inventor Goutam Chattopadhyay

Goutam Chattopadhyay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160149562
    Abstract: A solid state device chip including diodes (generating a higher frequency output through frequency multiplication of the input frequency) and a novel on-chip power combining design. Together with the on-chip power combining, the chip has increased efficiency because the diodes' anodes, being micro-fabricated simultaneously on the same patch of a GaAs wafer under identical conditions, are very well balanced. The diodes' GaAs heterostructure and the overall chip geometry are designed to be optimized for high power operation. As a result of all these features, the device can generate record-setting power having a signal frequency in the F-band and W-band (30% conversion efficiency).
    Type: Application
    Filed: November 25, 2015
    Publication date: May 26, 2016
    Inventors: Jose Vicente Siles Perez, Choonsup Lee, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi, Robert H. Lin, Alejandro Peralta
  • Publication number: 20150288048
    Abstract: A data link, comprising a substrate; and an ink structure printed and/or marked on a substrate, wherein the structure directs an electric, magnetic, and/or electromagnetic wave between two locations.
    Type: Application
    Filed: April 3, 2015
    Publication date: October 8, 2015
    Inventors: Adrian J. Tang, Goutam Chattopadhyay, Choonsup Lee, Emmanuel Decrossas, Nacer E. Chahat
  • Publication number: 20150280321
    Abstract: A system for wirelessly communicating between a base station and a mobile device, including a reflector integrated with a mobile device, wherein the reflector reflects carrier radiation transmitted from a base station, to form a reflection of the carrier radiation, and input data from the mobile device modulates a reflection coefficient of the reflector, thereby modulating the reflection such that the reflection of the carrier radiation carries the input data to the base station.
    Type: Application
    Filed: March 31, 2015
    Publication date: October 1, 2015
    Inventors: Adrian J. Tang, Nacer E. Chahat, Goutam Chattopadhyay, Choonsup Lee
  • Patent number: 9143084
    Abstract: A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: September 22, 2015
    Assignee: California Institute of Technology
    Inventors: Jose Vicente Siles Perez, Goutam Chattopadhyay, Choonsup Lee, Erich T. Schlecht, Cecile D. Jung-Kubiak, Imran Mehdi
  • Publication number: 20150236396
    Abstract: A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90°). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.
    Type: Application
    Filed: February 19, 2015
    Publication date: August 20, 2015
    Applicant: California Institute of Technology
    Inventors: Adrian Joseph Tang, Goutam Chattopadhyay, Nacer E. Chahat, Emmanuel Decrossas
  • Publication number: 20140340178
    Abstract: A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
    Type: Application
    Filed: April 15, 2014
    Publication date: November 20, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Goutam Chattopadhyay, Jose Vicente Siles Perez, Robert H. Lin, Imran Mehdi, Choonsup Lee, Ken B. Cooper, Alejandro Peralta
  • Patent number: 8780012
    Abstract: An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 15, 2014
    Assignee: California Institute of Technology
    Inventors: Nuria Llombart Juan, Choonsup Lee, Goutam Chattopadhyay, John J. Gill, Anders J. Skalare, Peter H. Siegel
  • Publication number: 20140144009
    Abstract: A set of antenna geometries for use in integrated arrays at terahertz frequencies are described. Two fabrication techniques to construct such antennas are presented. The first technique uses an advanced laser micro-fabrication, allowing fabricating advanced 3D geometries. The second technique uses photolithographic processes, allowing the fabrication of arrays on a single wafer in parallel.
    Type: Application
    Filed: April 24, 2013
    Publication date: May 29, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Goutam CHATTOPADHYAY, Imran Mehdi, Choonsup Lee, John J. Gill, Cecile Jung-Kubiak, Nuria Llombart
  • Publication number: 20140147192
    Abstract: A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 29, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
  • Patent number: 8693973
    Abstract: A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: April 8, 2014
    Assignee: California Institute of Technology
    Inventors: Goutam Chattopadhyay, Erich T. Schlecht, Choonsup Lee, Robert H. Lin, John J. Gill, Seth Sin, Imran Mehdi
  • Publication number: 20130229210
    Abstract: A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.
    Type: Application
    Filed: August 27, 2012
    Publication date: September 5, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Jose V. Siles, Goutam Chattopadhyay, Choonsup Lee, Erich T. Schlecht, Cecile Jung, Imran Mehdi
  • Publication number: 20120280742
    Abstract: A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: California Institute of Technology
    Inventors: Goutam Chattopadhyay, Erich T. Schlecht, Choonsup Lee, Robert H. Lin, John J. Gill, Seth Sin, Imran Mehdi
  • Patent number: 8193995
    Abstract: In one embodiment, a slot array antenna comprising a quartz layer and a silicon layer, wherein the quartz and silicon layers are matched to suppress microwave modes, and a metal layer adjacent to the silicon layer comprising offset cuts.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: June 5, 2012
    Assignee: California Institute of Technology
    Inventors: Mohammad M. Mojarradi, Goutam Chattopadhyay, Harish Manohara, Hadi Mojaradi
  • Patent number: 8144052
    Abstract: A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: March 27, 2012
    Assignee: California Institute of Technology
    Inventors: Ken B. Cooper, Robert J. Dengler, Peter H. Siegel, Goutam Chattopadhyay, John S. Ward, Nuria Llombart Juan, Tomas E. Bryllert, Imran Mehdi, Jan A. Tarsala
  • Publication number: 20120013517
    Abstract: Methods and apparatus for integrating lens antennas for receivers are disclosed. A method of fabricating a lens in accordance with one or more embodiments of the present invention comprises integrating lens material with a dielectric material and flowing the lens material into a desired lens shape. An integrated lens antenna in accordance with one or more embodiments of the present invention comprises a dielectric material, a waveguide feed, coupled to the dielectric material through a leaky wave cavity, and a lens, coupled to the dielectric material opposite the leaky wave cavity, wherein material is first deposited onto the dielectric material, flowed into a desired lens shape and the desired lens shape is transferred to the dielectric material.
    Type: Application
    Filed: June 14, 2011
    Publication date: January 19, 2012
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Choonsup Lee, Goutam Chattopadhyay, Nuria Llombart
  • Patent number: 7899432
    Abstract: In an embodiment, a submillimeter wave heterodyne receiver includes a finline ortho-mode transducer comprising thin tapered metallic fins deposited on a thin dielectric substrate to separate a vertically polarized electromagnetic mode from a horizontally polarized electromagnetic mode. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: March 1, 2011
    Assignee: California Institute of Technology
    Inventors: Goutam Chattopadhyay, Harish Manohara, Peter H. Siegel, John Ward
  • Publication number: 20100328779
    Abstract: An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.
    Type: Application
    Filed: June 30, 2010
    Publication date: December 30, 2010
    Applicant: California Institute of Technolology
    Inventors: Nuria Llombart Juan, Choonsup Lee, Goutam Chattopadhyay, John J. Gill, Anders Skalare, Peter H. Siegel
  • Patent number: 7773205
    Abstract: A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: August 10, 2010
    Assignee: California Institute of Technology
    Inventors: Ken B. Cooper, Goutam Chattopadhyay, Peter H. Siegel, Robert J. Dengler, Erich T. Schlecht, Imran Mehdi, Anders J. Skalare
  • Publication number: 20100090887
    Abstract: A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 15, 2010
    Applicant: California Institute of Technology
    Inventors: Ken B. Cooper, Robert J. Dengler, Peter H. Siegel, Goutam Chattopadhyay, John S. Ward, Nuria Llombart Juan, Tomas E. Bryllert, Imran Mehdi, Jan A. Tarsala
  • Publication number: 20100039342
    Abstract: In one embodiment, a slot array antenna comprising a quartz layer and a silicon layer, wherein the quartz and silicon layers are matched to suppress microwave modes, and a metal layer adjacent to the silicon layer comprising offset cuts.
    Type: Application
    Filed: May 19, 2009
    Publication date: February 18, 2010
    Applicant: California Institute of Technology
    Inventors: Mohammad M. Mojarradi, Goutam Chattopadhyay, Harish Manohara, Hadi Mojaradi