Patents by Inventor Gowrisankar Damarla

Gowrisankar Damarla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11088017
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: August 10, 2021
    Assignee: Micron Technology, Inc.
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Patent number: 10847442
    Abstract: A semiconductor device in accordance with some embodiments includes a substrate structure and a conductive interconnect extending through at least a portion of the substrate structure. The conductive interconnect can include a through-silicon via and a stress-relief feature that accommodates thermal expansion and/or thermal contraction of material to manage internal stresses in the semiconductor device. Methods of manufacturing the semiconductor device in accordance with some embodiments includes removing material of the conductive interconnect to form the stress-relief gap.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: November 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu, Gowrisankar Damarla, Shyam Ramalingam
  • Publication number: 20200203220
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Application
    Filed: March 2, 2020
    Publication date: June 25, 2020
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Patent number: 10600682
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: March 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Publication number: 20190294330
    Abstract: Solid state memory technology is disclosed. In one example, a solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. In another example, a solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Applicant: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Publication number: 20190206727
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Application
    Filed: October 26, 2018
    Publication date: July 4, 2019
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Patent number: 10318170
    Abstract: Solid state memory technology is disclosed. A solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. A solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Patent number: 10319678
    Abstract: A three dimensional or stacked circuit device includes a conductive channel cap on a conductor channel. The channel cap can be created via selective deposition or other process to prevent polishing down the conductive material to isolate the contacts. The conductor channel extends through a deck of multiple tiers of circuit elements that are activated via a gate. The gate is activated by electrical potential in the conductor channel. The conductive cap on the conductor channel can electrically connect the conductor channel to a bitline or other signal line, and/or to another deck of multiple circuit elements.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 11, 2019
    Assignee: Intel Corporation
    Inventors: Hongqi Li, Gowrisankar Damarla, Roger Lindsay, Zailong Bian, Jin Lu, Shyam Ramalingam, Prasanna Srinivasan
  • Patent number: 10269625
    Abstract: A method of forming a semiconductor structure includes forming a sacrificial material over a stack comprising alternating levels of a dielectric material and another material, forming an opening through the sacrificial material and at least some of the alternating levels of the dielectric material and the another material, forming at least one oxide material in the opening and overlying surfaces of the sacrificial material, an uppermost surface of the at least one oxide material extending more distal from a surface of a substrate than an uppermost level of the dielectric material and the another material, planarizing at least a portion of the at least one oxide material to expose a portion of the sacrificial material, and removing the sacrificial material while the uppermost surface of the at least one oxide material remains more distal from the surface of the substrate than the uppermost level of the alternating levels of the dielectric material and the another material.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: April 23, 2019
    Assignee: Micron Technology, Inc.
    Inventors: John B. Matovu, David S. Meyaard, Gowrisankar Damarla, Sri Sai Sivakumar Vegunta, Kunal Shrotri, Shashank Saraf, Kevin R. Gast, Jivaan Kishore Jhothiraman, Suresh Ramarajan, Lifang Xu, Rithu K. Bhonsle, Rutuparna Narulkar, Matthew J. King
  • Publication number: 20190051662
    Abstract: A three dimensional memory device is described having an array region and a periphery region. The array region has a three dimensional stack of storage cells. The periphery region has contacts that extend from above the three dimensional stack of storage cells to below the three dimensional stack of storage cells. The periphery region is substantially devoid of conducting and/or semi-conducting layers of the three dimensional stack of storage cells.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 14, 2019
    Inventors: Sri Sai Sivakumar VEGUNTA, Gowrisankar DAMARLA, Jian ZHOU
  • Publication number: 20180307412
    Abstract: Solid state memory technology is disclosed. In one example, a solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. In another example, a solid state memory component can include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods are also disclosed.
    Type: Application
    Filed: January 2, 2018
    Publication date: October 25, 2018
    Applicant: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Patent number: 10096612
    Abstract: A three dimensional memory device is described having an array region and a periphery region. The array region has a three dimensional stack of storage cells. The periphery region has contacts that extend from above the three dimensional stack of storage cells to below the three dimensional stack of storage cells. The periphery region is substantially devoid of conducting and/or semi-conducting layers of the three dimensional stack of storage cells.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: October 9, 2018
    Assignee: Intel Corporation
    Inventors: Sri Sai Sivakumar Vegunta, Gowrisankar Damarla, Jian Zhou
  • Patent number: 9911643
    Abstract: Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: March 6, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Gowrisankar Damarla, Robert J. Hanson, Jin Lu, Shyam Ramalingam
  • Patent number: 9857989
    Abstract: A solid state memory component can include a plurality of bit lines, a source line, and a plurality of non-functional memory pillars. Each non-functional memory pillar is electrically isolated from one or both of the plurality of bit lines and the source line. A solid state memory component can also include a plurality of pillars located in a periphery portion of the solid state memory component, and memory cells adjacent to each of the pillars. Associated systems and methods can include or otherwise utilize such solid state memory components.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: January 2, 2018
    Assignee: Intel Corporation
    Inventors: Jun Zhao, Gowrisankar Damarla, David A. Daycock, Gordon A. Haller, Sri Sai Sivakumar Vegunta, John B. Matovu, Matthew R. Park, Prakash Rau Mokhna Rau
  • Publication number: 20170133585
    Abstract: Exemplary embodiments of the present invention are directed towards a method for fabricating a semiconductor memory device comprising selectively depositing a material to form a cap above a recessed cell structure in order to prevent degradation of components inside the cell structure in oxidative or corrosive environments.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Muralikrishnan Balakrishnan, Zailong Bian, Gowrisankar Damarla, Hongqi Li, Jin Lu, Shyam Ramalingam, Xiaoyun Zhu
  • Publication number: 20170077117
    Abstract: A three dimensional memory device is described having an array region and a periphery region. The array region has a three dimensional stack of storage cells. The periphery region has contacts that extend from above the three dimensional stack of storage cells to below the three dimensional stack of storage cells. The periphery region is substantially devoid of conducting and/or semi-conducting layers of the three dimensional stack of storage cells.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 16, 2017
    Inventors: SRI SAI SIVAKUMAR VEGUNTA, GOWRISANKAR DAMARLA, JIAN ZHOU
  • Patent number: 9577192
    Abstract: Exemplary embodiments of the present invention are directed towards a method for fabricating a semiconductor memory device comprising selectively depositing a material to form a cap above a recessed cell structure in order to prevent degradation of components inside the cell structure in oxidative or corrosive environments.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: February 21, 2017
    Assignee: Sony Semiconductor Solutions Corporation
    Inventors: Muralikrishnan Balakrishnan, Zailong Bian, Gowrisankar Damarla, Hongqi Li, Jin Lu, Shyam Ramalingam, Xiaoyun Zhu
  • Publication number: 20160293482
    Abstract: Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
    Type: Application
    Filed: June 14, 2016
    Publication date: October 6, 2016
    Inventors: Hongqi Li, Gowrisankar Damarla, Robert J. Hanson, Jin Lu, Shyam Ramalingam
  • Publication number: 20160247756
    Abstract: A three dimensional or stacked circuit device includes a conductive channel cap on a conductor channel. The channel cap can be created via selective deposition or other process to prevent polishing down the conductive material to isolate the contacts. The conductor channel extends through a deck of multiple tiers of circuit elements that are activated via a gate. The gate is activated by electrical potential in the conductor channel. The conductive cap on the conductor channel can electrically connect the conductor channel to a bitline or other signal line, and/or to another deck of multiple circuit elements.
    Type: Application
    Filed: December 22, 2015
    Publication date: August 25, 2016
    Inventors: Hongqi Li, Gowrisankar Damarla, Roger Lindsay, Zailong Bian, Jin Lu, Shyam Ramalingam, Prasanna Srinivasan
  • Patent number: 9391001
    Abstract: Some embodiments include semiconductor constructions having first and second electrically conductive lines that intersect with one another at an intersection. The first line has primarily a first width, and has narrowed regions directly against the second line and on opposing sides of the second line from one another. Electrically conductive contacts are along the first line and directly electrically coupled to the first line, and one of the electrically conductive contacts is directly against the intersection. Some embodiments include methods of forming intersecting lines of material. First and second trenches are formed, and intersect with one another at an intersection. The first trench has primarily a first width, and has narrowed regions directly against the second trench and on opposing sides of the second trench from one another. Material is deposited within the first and second trenches to substantially entirely fill the first and second trenches.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 12, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Hongqi Li, Gowrisankar Damarla, Robert J. Hanson, Jin Lu, Shyam Ramalingam