Patents by Inventor Grant M. Kloster

Grant M. Kloster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250112077
    Abstract: An embodiment discloses an electronic device comprising an integrated circuit (IC) die, a stub extending from the IC die; and a mesa structure under the IC die, wherein the IC die and the stub are bonded to the mesa structure.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Feras Eid, Andrey Vyatskikh, Adel Elsherbini, Brandon M. Rawlings, Tushar Kanti Talukdar, Thomas L. Sounart, Kimin Jun, Johanna Swan, Grant M. Kloster, Carlos Bedoya Arroyave
  • Publication number: 20250108459
    Abstract: An embodiment discloses a method comprising receiving a substrate comprising a first layer, a second layer over the first layer, and a third layer over the second layer, the third layer comprising a plurality of integrated circuit (IC) components, and applying a laser to ablate portions of the first layer, wherein the second layer protects the third layer from cracking during application of the laser.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Applicant: INTEL CORPORATION
    Inventors: Andrey Vyatskikh, Feras Eid, Tushar Kanti Talukdar, Kimin Jun, Thomas L. Sounart, Jeffery D. Bielefeld, Grant M. Kloster, Carlos Bedoya Arroyave, Golsa Naderi, Adel Elsherbini
  • Publication number: 20250105046
    Abstract: Methods of selectively transferring portions of layers between substrates, and devices and systems formed using the same, are disclosed herein. In one embodiment, a first substrate with a layer of integrated circuit (IC) components is received, and a second substrate with one or more adhesive areas is received. The first substrate is partially bonded to the second substrate, such that a subset of IC components on the first substrate are bonded to the adhesive areas on the second substrate. The first substrate is then separated from the second substrate, and the subset of IC components bonded to the second substrate are separated from the first substrate and remain on the second substrate.
    Type: Application
    Filed: September 25, 2023
    Publication date: March 27, 2025
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Thomas L. Sounart, Feras Eid, Tushar Kanti Talukdar, Brandon M. Rawlings, Andrey Vyatskikh, Carlos Bedoya Arroyave, Kimin Jun, Shawna M. Liff, Grant M. Kloster, Richard F. Vreeland, William P. Brezinski, Johanna Swan
  • Patent number: 11532724
    Abstract: Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: December 20, 2022
    Assignee: Intel Corporation
    Inventors: Scott B. Clendenning, Szuya S. Liao, Florian Gstrein, Rami Hourani, Patricio E. Romero, Grant M. Kloster, Martin M. Mitan
  • Publication number: 20210143265
    Abstract: Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
    Type: Application
    Filed: January 21, 2021
    Publication date: May 13, 2021
    Applicant: Intel Corporation
    Inventors: Scott B. Clendenning, Szuya S. Liao, Florian Gstrein, Rami Hourani, Patricio E. Romero, Grant M. Kloster, Martin M. Mitan
  • Patent number: 10971600
    Abstract: Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: April 6, 2021
    Assignee: Intel Corporation
    Inventors: Scott B. Clendenning, Szuya S. Liao, Florian Gstrein, Rami Hourani, Patricio E. Romero, Grant M. Kloster, Martin M. Mitan
  • Publication number: 20200020786
    Abstract: Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 16, 2020
    Applicant: Intel Corporation
    Inventors: Scott B. Clendenning, Szuya S. Liao, Florian Gstrein, Rami Hourani, Patricio E. Romero, Grant M. Kloster, Martin M. Mitan
  • Patent number: 10396176
    Abstract: Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: August 27, 2019
    Assignee: Intel Corporation
    Inventors: Scott B. Clendenning, Szuya S. Liao, Florian Gstrein, Rami Hourani, Patricio E. Romero, Grant M. Kloster, Martin M. Mitan
  • Publication number: 20180219080
    Abstract: Techniques related to forming selective gate spacers for semiconductor devices and transistor structures and devices formed using such techniques are discussed. Such techniques include forming a blocking material on a semiconductor fin, disposing a gate having a different surface chemistry than the blocking material on a portion of the blocking material, forming a selective conformal layer on the gate but not on a portion of the blocking material, and removing exposed portions of the blocking material.
    Type: Application
    Filed: September 26, 2014
    Publication date: August 2, 2018
    Applicant: Intel Corporation
    Inventors: Scott B. CLENDENNING, Szuya S. LIAO, Florian GSTREIN, Rami HOURANI, Patricio E. ROMERO, Grant M. KLOSTER, Martin M. MITAN
  • Publication number: 20180130707
    Abstract: Bottom-up fill approaches for forming metal features of semiconductor structures, and the resulting structures, are described. In an example, a semiconductor structure includes a trench disposed in an inter-layer dielectric (ILD) layer. The trench has sidewalls, a bottom and a top. A U-shaped metal seed layer is disposed at the bottom of the trench and along the sidewalls of the trench but substantially below the top of the trench. A metal fill layer is disposed on the U-shaped metal seed layer and fills the trench to the top of the trench. The metal fill layer is in direct contact with dielectric material of the ILD layer along portions of the sidewalls of the trench above the U-shaped metal seed layer.
    Type: Application
    Filed: June 18, 2015
    Publication date: May 10, 2018
    Inventors: Scott B. CLENDENNING, Martin M. MITAN, Timothy E. GLASSMAN, Flavio GRIGGIO, Grant M. KLOSTER, Kent N. FRASURE, Florian GSTREIN, Rami HOURANI
  • Patent number: 9932671
    Abstract: Precursor and process design for photo-assisted metal atomic layer deposition (ALD) and chemical vapor deposition (CVD) is described. In an example, a method of fabricating a thin metal film involves introducing precursor molecules proximate to a surface on or above a substrate, each of the precursor molecules having one or more metal centers surrounded by ligands. The method also involves depositing a metal layer on the surface by dissociating the ligands from the precursor molecules using a photo-assisted process.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: James M. Blackwell, Patricio E. Romero, Scott B. Clendenning, Grant M. Kloster, Florian Gstrein, Harsono S. Simka, Paul A. Zimmerman, Robert L. Bristol
  • Publication number: 20170058401
    Abstract: Precursor and process design for photo-assisted metal atomic layer deposition (ALD) and chemical vapor deposition (CVD) is described. In an example, a method of fabricating a thin metal film involves introducing precursor molecules proximate to a surface on or above a substrate, each of the precursor molecules having one or more metal centers surrounded by ligands. The method also involves depositing a metal layer on the surface by dissociating the ligands from the precursor molecules using a photo-assisted process.
    Type: Application
    Filed: March 27, 2014
    Publication date: March 2, 2017
    Inventors: James M. BLACKWELL, Patricio E. ROMERO, Scott B. CLENDENNING, Grant M. KLOSTER, Florian GSTREIN, Harsono S. SIMKA, Paul A. ZIMMERMAN, Robert L. BRISTOL
  • Patent number: 9530733
    Abstract: A method of an aspect includes forming a first thicker layer of a first material over a first region having a first surface material by separately forming each of a first plurality of thinner layers by selective chemical reaction. The method also includes limiting encroachment of each of the first plurality of thinner layers over a second region that is adjacent to the first region. A second thicker layer of a second material is formed over the second region having a second surface material that is different than the first surface material.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 27, 2016
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, James M. Blackwell, Scott B. Clendenning, Florian Gstrein, Eungnak Han, Grant M. Kloster, Jeanette M. Roberts, Patricio E. Romero, Rami Hourani
  • Publication number: 20160190060
    Abstract: A method of an aspect includes forming a first thicker layer of a first material over a first region having a first surface material by separately forming each of a first plurality of thinner layers by selective chemical reaction. The method also includes limiting encroachment of each of the first plurality of thinner layers over a second region that is adjacent to the first region. A second thicker layer of a second material is formed over the second region having a second surface material that is different than the first surface material.
    Type: Application
    Filed: September 27, 2013
    Publication date: June 30, 2016
    Inventors: Robert L. Bristol, James M. BLACKWELL, Scott B. CLENDENNING, Florian GSTREIN, Eungnak HAN, Grant M. KLOSTER, Jeanette M. ROBERTS, Patricio E. ROMERO, Rami HOURANI
  • Patent number: 7544896
    Abstract: Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a dielectric layer utilizing a plasma, wherein the plasma comprises a porogen and substantially no oxidizing agent, and then applying energy to the dielectric layer, wherein the porogen disposed within the dielectric layer decomposes to form at least one pore.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: June 9, 2009
    Assignee: Intel Corporation
    Inventors: Boyan Boyanov, Grant M. Kloster, Vijay Ramachandrarao, Hyun-Mog Park
  • Patent number: 7365375
    Abstract: An organic-framework zeolite interlayer dielectric is disclosed. The interlayer dielectric's resistance to chemical attack, its dielectric constant, its mechanical strength, or combinations thereof can be tailored by (1) varying the ratio of carbon-to-oxygen in the organic-framework zeolite, (2) by including tetravalent atoms other than silicon at tetrahedral sites in the organic-framework zeolite, or (3) by including combinations of pentavalent/trivalent atoms at tetrahedral sites in the organic-framework zeolite.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: April 29, 2008
    Assignee: Intel Corporation
    Inventors: Michael D. Goodner, Mansour Moinpour, Grant M. Kloster, Boyan Boyanov
  • Patent number: 7344972
    Abstract: The invention provides a layer of photosensitive material that may be directly patterned. The photosensitive material may then be decomposed to leave voids or air gaps in the layer. This may provide a low dielectric constant layer with reduced resistance capacitance delay characteristics.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: March 18, 2008
    Assignee: Intel Corporation
    Inventors: Michael D. Goodner, Kevin P. O'Brien, Grant M. Kloster, Robert P. Meagley
  • Patent number: 7332406
    Abstract: A low-k dielectric sacrificial material is formed within a microelectronic structure covered with a layer defining an exhaust vent. At an appropriate time, the underlying sacrificial material is decomposed and exhausted away through the exhaust vent. Residue from the exhausted sacrificial material accumulates at the vent location during exhaustion until the vent is substantially occluded. As a result, an air gap is created having desirable characteristics as a dielectric.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: February 19, 2008
    Assignee: Intel Corporation
    Inventors: Hyun-Mog Park, Grant M. Kloster
  • Patent number: 7320928
    Abstract: Numerous embodiments of a stacked device filler and a method of formation are disclosed. In one embodiment, a method of forming a stacked device filler comprises forming a material layer between two or more substrates of a stacked device, and causing a reaction in at least a portion of the material, wherein the reaction may comprise polymerization, and the material layer may be one or a combination of materials, such as nonconductive polymer materials, for example.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: January 22, 2008
    Assignee: Intel Corporation
    Inventors: Grant M. Kloster, David Staintes, Shriram Ramanathan
  • Patent number: 7303989
    Abstract: A method for impregnating the pores of a zeolite low-k dielectric layer with a polymer, and forming an interconnect structure therein, thus mechanically strengthening the dielectric layer and preventing metal deposits within the pores.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: December 4, 2007
    Assignee: Intel Corporation
    Inventors: Boyan Boyanov, Grant M. Kloster, Michael D. Goodner