Patents by Inventor Greg C. Baldwin

Greg C. Baldwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8609483
    Abstract: Electrical device structures constructed in an isolated p-well that is wholly contained within a core n-well. Methods of forming electrical devices within an isolated p-well that is wholly contained within a core n-well using a baseline CMOS process flow.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: December 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Kamel Benaissa, Greg C. Baldwin
  • Patent number: 8604543
    Abstract: An integrated circuit with a core PMOS transistor formed in a first n-well and an isolated DENMOS (iso-DENMOS) transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same. A method of forming an integrated circuit with a core PMOS transistor formed in a first n-well and an iso-DENMOS transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: December 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Kamel Benaissa, Greg C. Baldwin, Vineet Mishra, Ananth Kamath
  • Patent number: 8405154
    Abstract: An integrated circuit is disclosed having symmetric and asymmetric MOS transistors of the same polarity, oriented perpendicularly to each other, formed by concurrent halo ion, LDD ion and/or S/D ion implant processes using angled, rotated sub-implants which vary the tilt angle, dose and/or energy between rotations. Implanted halo, LDD and/or S/D source and drain regions formed by angled subimplants may have different extents of overlap with, or lateral separation from, gates of the two types of transistors, producing transistors with two different sets of electrical properties. A process for concurrently fabricating the two types of transistors is also disclosed. Specific embodiments of processes for concurrently forming symmetric and asymmetric transistors are disclosed.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: March 26, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Kamel Benaissa, Greg C. Baldwin, Shaofeng Yu, Shashank S. Ekbote
  • Patent number: 8344479
    Abstract: Integrated circuit inductors (5) are formed by interconnecting various metal layers (10) in an integrated circuit with continuous vias (200). Using continuous vias (200) improves the Q factor over existing methods for high frequency applications. The contiguous length of the continuous vias should be greater than three percent of the length of the inductor (5).
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: January 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Robert L. Pitts, Greg C. Baldwin
  • Publication number: 20120261766
    Abstract: An integrated circuit with a core PMOS transistor formed in a first n-well and an isolated DENMOS (iso-DENMOS) transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same. A method of forming an integrated circuit with a core PMOS transistor formed in a first n-well and an iso-DENMOS transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 18, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kamel BENAISSA, Greg C. BALDWIN, Vineet MISHRA, Ananth KAMATH
  • Patent number: 8232158
    Abstract: An integrated circuit with a core PMOS transistor formed in a first n-well and an isolated DENMOS (iso-DENMOS) transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same. A method of forming an integrated circuit with a core PMOS transistor formed in a first n-well and an iso-DENMOS transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: July 31, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Kamel Benaissa, Greg C. Baldwin, Vineet Mishra, Ananth Kamath
  • Patent number: 8114729
    Abstract: A method of fabricating a CMOS integrated circuit and integrated circuits therefrom includes the steps of providing a substrate having a semiconductor surface, forming a gate dielectric layer on the semiconductor surface and a polysilicon including layer on the gate dielectric. A portion of the polysilicon layer is masked, and pre-gate etch implant of a first dopant type into an unmasked portion of the polysilicon layer is performed, wherein masked portions of the polysilicon layer are protected from the first dopant. The polysilicon layer is patterned to form a plurality of polysilicon gates and a plurality of polysilicon lines, wherein the masked portion includes at least one of the polysilicon lines which couple a polysilicon gate of a PMOS device to a polysilicon gate of an NMOS device.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 14, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Shashank Ekbote, Kamel Benaissa, Greg C. Baldwin, Borna Obradovic
  • Publication number: 20110248347
    Abstract: An integrated circuit is disclosed having symmetric and asymmetric MOS transistors of the same polarity, oriented perpendicularly to each other, formed by concurrent halo ion, LDD ion and/or S/D ion implant processes using angled, rotated sub-implants which vary the tilt angle, dose and/or energy between rotations. Implanted halo, LDD and/or S/D source and drain regions formed by angled subimplants may have different extents of overlap with, or lateral separation from, gates of the two types of transistors, producing transistors with two different sets of electrical properties. A process for concurrently fabricating the two types of transistors is also disclosed. Specific embodiments of processes for concurrently forming symmetric and asymmetric transistors are disclosed.
    Type: Application
    Filed: June 23, 2011
    Publication date: October 13, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kamel BENAISSA, Greg C. BALDWIN, Shaofeng YU, Shashank S. EKBOTE
  • Patent number: 7994009
    Abstract: An integrated circuit is disclosed having symmetric and asymmetric MOS transistors of the same polarity, oriented perpendicularly to each other, formed by concurrent halo ion, LDD ion and/or S/D ion implant processes using angled, rotated sub-implants which vary the tilt angle, dose and/or energy between rotations. Implanted halo, LDD and/or S/D source and drain regions formed by angled subimplants may have different extents of overlap with, or lateral separation from, gates of the two types of transistors, producing transistors with two different sets of electrical properties. A process for concurrently fabricating the two types of transistors is also disclosed. Specific embodiments of processes for concurrently forming symmetric and asymmetric transistors are disclosed.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: August 9, 2011
    Inventors: Kamel Benaissa, Greg C. Baldwin, Shaofeng Yu, Shashank S. Ekbote
  • Publication number: 20110156144
    Abstract: An integrated circuit with a core PMOS transistor formed in a first n-well and an isolated DENMOS (iso-DENMOS) transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same. A method of forming an integrated circuit with a core PMOS transistor formed in a first n-well and an iso-DENMOS transistor formed in a second n-well where the depth and doping of the first and second n-wells are the same.
    Type: Application
    Filed: June 28, 2010
    Publication date: June 30, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kamel Benaissa, Greg C. Baldwin, Vineet Mishra, Ananth Kamath
  • Publication number: 20110133880
    Abstract: Integrated circuit inductors (5) are formed by interconnecting various metal layers (10) in an integrated circuit with continuous vias (200). Using continuous vias (200) improves the Q factor over existing methods for high frequency applications. The contiguous length of the continuous vias should be greater than three percent of the length of the inductor (5).
    Type: Application
    Filed: February 15, 2011
    Publication date: June 9, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Robert L. Pitts, Greg C. Baldwin
  • Patent number: 7888227
    Abstract: Integrated circuit inductors (5) are formed by interconnecting various metal layers (10) in an integrated circuit with continuous vias (200). Using continuous vias (200) improves the Q factor over existing methods for high frequency applications. The contiguous length of the continuous vias should be greater than three percent of the length of the inductor (5).
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: February 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Robert L. Pitts, Greg C. Baldwin
  • Publication number: 20100327374
    Abstract: An integrated circuit is disclosed having symmetric and asymmetric MOS transistors of the same polarity, oriented perpendicularly to each other, formed by concurrent halo ion, LDD ion and/or S/D ion implant processes using angled, rotated sub-implants which vary the tilt angle, dose and/or energy between rotations. Implanted halo, LDD and/or S/D source and drain regions formed by angled subimplants may have different extents of overlap with, or lateral separation from, gates of the two types of transistors, producing transistors with two different sets of electrical properties. A process for concurrently fabricating the two types of transistors is also disclosed. Specific embodiments of processes for concurrently forming symmetric and asymmetric transistors are disclosed.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: Kamel Benaissa, Greg C. Baldwin, Shaofeng Yu, Shashank S. Ekbote
  • Publication number: 20100327361
    Abstract: An integrated circuit is disclosed containing two types of MOS transistors of the same polarity, oriented perpendicularly to each other, formed by concurrent halo ion, LDD ion and/or S/D ion implant processes using angled, rotated sub-implants which vary the tilt angle, dose and/or energy between rotations. Implanted halo, LDD and/or S/D source and drain regions formed by angled subimplants may have different extents of overlap with, or lateral separation from, gates of the two types of transistors, producing transistors with two different sets of electrical properties. A process for concurrently fabricating the two types of transistors is also disclosed.
    Type: Application
    Filed: June 26, 2009
    Publication date: December 30, 2010
    Inventors: KAMEL BENAISSA, Greg C. Baldwin, Shaofeng Yu
  • Publication number: 20100327335
    Abstract: Electrical device structures constructed in an isolated p-well that is wholly contained within a core n-well. Methods of forming electrical devices within an isolated p-well that is wholly contained within a core n-well using a baseline CMOS process flow.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 30, 2010
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kamel BENAISSA, Greg C. BALDWIN
  • Patent number: 7718482
    Abstract: A method of fabricating a CMOS integrated circuit includes the steps of providing a substrate having a semiconductor surface, forming a gate dielectric layer on the semiconductor surface and a polysilicon layer on the gate dielectric layer. The polysilicon layer is patterned while being undoped to form a plurality of polysilicon comprising gates. A first pattern is used to protect a plurality of PMOS devices and a first n-type implant is performed to dope the gates and source/drain regions for a plurality of NMOS devices. A second pattern is used to protect the PMOS devices and the sources/drains and gates for a portion of the plurality of NMOS devices and a second n-type implant is performed to dope the gates of the other NMOS devices.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 18, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Shashank Ekbote, Borna Obradovic, Greg C. Baldwin
  • Publication number: 20090098694
    Abstract: A method of fabricating a CMOS integrated circuit includes the steps of providing a substrate having a semiconductor surface, forming a gate dielectric layer on the semiconductor surface and a polysilicon layer on the gate dielectric layer. The polysilicon layer is patterned while being undoped to form a plurality of polysilicon comprising gates. A first pattern is used to protect a plurality of PMOS devices and a first n-type implant is performed to dope the gates and source/drain regions for a plurality of NMOS devices. A second pattern is used to protect the PMOS devices and the sources/drains and gates for a portion of the plurality of NMOS devices and a second n-type implant is performed to dope the gates of the other NMOS devices.
    Type: Application
    Filed: October 30, 2007
    Publication date: April 16, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Shashank Ekbote, Borna Obradovic, Greg C. Baldwin
  • Publication number: 20090096031
    Abstract: A method of fabricating a CMOS integrated circuit and integrated circuits therefrom includes the steps of providing a substrate having a semiconductor surface, forming a gate dielectric layer on the semiconductor surface and a polysilicon including layer on the gate dielectric. A portion of the polysilicon layer is masked, and pre-gate etch implant of a first dopant type into an unmasked portion of the polysilicon layer is performed, wherein masked portions of the polysilicon layer are protected from the first dopant. The polysilicon layer is patterned to form a plurality of polysilicon gates and a plurality of polysilicon lines, wherein the masked portion includes at least one of the polysilicon lines which couple a polysilicon gate of a PMOS device to a polysilicon gate of an NMOS device.
    Type: Application
    Filed: October 10, 2007
    Publication date: April 16, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Shashank EKBOTE, Kamel Benaissa, Greg C. Baldwin, Borna Obradovic
  • Publication number: 20080286933
    Abstract: Integrated circuit inductors (5) are formed by interconnecting various metal layers (10) in an integrated circuit with continuous vias (200). Using continuous vias (200) improves the Q factor over existing methods for high frequency applications. The contiguous length of the continuous vias should be greater than three percent of the length of the inductor (5).
    Type: Application
    Filed: June 12, 2008
    Publication date: November 20, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Robert L. Pitts, Greg C. Baldwin
  • Patent number: 7400025
    Abstract: Integrated circuit inductors (5) are formed by interconnecting various metal layers (10) in an integrated circuit with continuous vias (200). Using continuous vias (200) improves the Q factor over existing methods for high frequency applications. The contiguous length of the continuous vias should be greater than three percent of the length of the inductor (5).
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: July 15, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Robert L. Pitts, Greg C. Baldwin