Patents by Inventor Gregory A. Trees

Gregory A. Trees has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9861428
    Abstract: A medical device includes an end effector configured to apply bipolar energy to target tissue along a working portion thereof and a fluid control system to control the flow of a fluid produced when the end effector applies the bipolar energy to heat the target tissue. The fluid control system includes a fluid path element defining a fluid path, a distal fluid port configured to intake the fluid adjacent to the working portion of an end effector for transport through the fluid path, and a proximal fluid port configured to intake the fluid transported through the fluid path and to exhaust the transported fluid.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: January 9, 2018
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Susan G. Arshonsky, Jonathan T. Batross, Chad P. Boudreaux, Edward G. Chekan, Catherine A. Corbett, Craig T. Davis, Alex W. Kiturkes, Terry A. McFarland, David A. Monroe, John M. Sarley, Frederick E. Shelton, IV, John B. Schulte, Foster B. Stulen, Aaron C. Voegele, William B. Weisenburgh, II, Tamara Widenhouse, David A. Witt
  • Publication number: 20180000539
    Abstract: An electrosurgical device comprises a body, an end effector, a cutting member, and a shaft. The end effector includes a pair of jaws that are operable to deliver RF energy to tissue that is clamped between the jaws. The cutting member is operable to sever tissue that is clamped between the jaws. The shaft extends between the body and the end effector. The shaft includes an articulation section that is operable to selectively position the end effector at non-parallel positions relative to the longitudinal axis of the shaft. Some versions include a rotation section that is distal to the articulation section. The rotation section is operable to rotate the end effector relative to the articulation section.
    Type: Application
    Filed: July 17, 2017
    Publication date: January 4, 2018
    Inventors: Barry C. Worrell, David K. Norvell, Charles J. Scheib, Frederick E. Shelton, IV, Geoffrey S. Strobl, Jeffrey S. Swayze, Gregory A. Trees, Jason E. Zerkle, Kevin M. Montgomery
  • Publication number: 20170367752
    Abstract: Instruments and methods for providing selective surgical instrument trigger lockout are provided herein. In one embodiment, a surgical instrument can include a distal end effector, a proximal actuator portion, a first trigger, a second trigger, and a lock arm. The lock arm can be configured to move between a first position, in which it interferes with actuation of the first trigger, and a second position, in which it permits actuation of the first trigger. Further, actuation of the second trigger can be effective to move the lock arm from the first position to the second position. Actuation of the first trigger can therefore be prevented if the second trigger is not already actuated. Selective trigger lockout can be useful in a variety of instruments, including, for example, surgical instruments that grasp, seal, and transect tissue.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 28, 2017
    Inventors: Chad P. Boudreaux, Gregory A. Trees, Geoffrey S. Strobl
  • Patent number: 9848937
    Abstract: A surgical end effector has a first jaw comprising a first electrode and a second jaw, wherein at least one of the first jaw and the second jaw is movable relative to the other one of the first jaw and the second jaw to transition the end effector between an open configuration, an approximated configuration, and a fully approximated configuration. The second jaw includes a second electrode and a spacer extending from the second electrode, wherein the spacer is configured to maintain a predetermined distance between the first electrode and the second electrode when the end effector is in the fully approximated configuration, wherein the spacer is in contact with the first electrode in the fully approximated configuration, wherein the spacer is spaced apart from the first electrode in the open configuration, and wherein the spacer is comprised of a semi-conductive material.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: December 26, 2017
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Geoffrey S. Strobl
  • Publication number: 20170319228
    Abstract: A control system for a surgical robot is disclosed. The control system includes a controller, a sensor, a feedback device, a first socket, and a stand-alone input device. The handheld user interface may control a function of a robotic surgical system and is coupled to the sensor and the controller. The sensor is coupled to the controller. The feedback device is coupled to the controller and is configured to provide feedback associated with the robotic surgical system to a user. The controller is communicatively coupleable to the robotic surgical system and is configured to send robot control signals to the robotic surgical system, to receive feedback signals from the robotic surgical system, and to send feedback control signals to the feedback device to control the feedback provided to the user. The controller is configured to couple to a stand-alone input device through the first socket.
    Type: Application
    Filed: March 20, 2017
    Publication date: November 9, 2017
    Inventors: Barry C. Worrell, Geoffrey S. Strobl, Gregory A. Trees, Jonathan T. Batross, Nicholas G. Molitor, Kristen T. Shoger, David K. Norvell, Michael J. Andreyko, Gregory W. Johnson, Shawn C. Snyder, Chad P. Boudreaux
  • Patent number: 9808307
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: November 7, 2017
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Publication number: 20170312019
    Abstract: An end effector includes a grasping portion that includes a first jaw member having a first electrode, a second jaw member having a second electrode, a first electrically conductive member located either on the first jaw member or the second jaw member, and a gap setting portion having a second electrically conductive member located at the distal end of either the first jaw member or the second jaw member. The electrically insulative member is sized and configured to engage tissue and the second electrically conductive member sized and configured to define a minimum distance between the first and second electrodes.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Gregory A. Trees, Megan A. Broderick, Frederick E. Shelton, IV, Chad P. Boudreaux, John M. Sarley, David C. Yates
  • Publication number: 20170312018
    Abstract: An end effector has a first jaw member that includes a first electrode, and second jaw member that includes a second electrode, an electrically conductive member located at the distal end of either the first jaw member or the second jaw member, and an electrically insulative member located either on the first jaw member or the second jaw member. The electrically conductive member is configured to define a distance between the first and second electrodes along the length of the first and second electrodes, the electrically conductive member having a first stiffness. The electrically insulative member is located either on the first jaw member or the second jaw member and is sized and configured to engage tissue. The electrically conductive member has a first stiffness and the electrically insulative member has a second stiffness. The first stiffness is greater than the first stiffness.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Gregory A. Trees, Megan A. Broderick, Paul T. Franer, Robert J. Sanzone, Frederick E. Shelton, IV, Mark A. Davison, David C. Yates
  • Publication number: 20170312017
    Abstract: An end effector includes a first and second jaw member each comprising a first and second electrode. The first and second jaw members are movable relative to the other between an open position and a closed position. An electrically conductive member is located at the distal end of the first jaw member. The electrically conductive member is sized and configured to define a minimum distance between the first and second electrodes along the length of the first and second electrodes. An electrically insulative member is located on one of the first jaw member or the second jaw member. The electrically insulative member is sized and configured to engage tissue and has a dimension extending from one of the first jaw member or the second jaw member. The dimension is less than the minimum distance.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Gregory A. Trees, Megan A. Broderick, Victor C. Moreno
  • Patent number: 9801679
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device's motor can begin providing power for grasping and/or cutting tissue in response to an output from the device's sensor, the device can adjust power provided by the motor based on whether the device is clamping tissue or is being fired, the device can adjust an amount of power provided by the motor based on an amount of user-applied force to the device's actuator and/or can control drive direction of the motor based on the amount of the force, the device can maintain a force applied to the device, the device can self-shift the motor, and/or the device can adjust an amount of power provided to the device's end effector based on a degree of the end effector's closure.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 31, 2017
    Assignee: Ethicon LLC
    Inventors: Gregory Trees, Eric Johnson, Chad Boudreaux, Robert Laird, Rudolph Nobis, Geoffrey Strobl, Jason Lesko, John Hibner, David Yates, David Locke, William B. Weisenburgh, II, Phillip Clauda
  • Patent number: 9737326
    Abstract: A surgical robot control system including a controller, a coupling system, a sensor, and a feedback device is disclosed. The coupling system is configured to couple a handheld surgical user interface to the controller. The handheld user interface may control a function of a robotic surgical system. The sensor is coupled to the controller and the coupling system and is configured to detect actuation of the handheld user interface and to communicate detected actuations to the controller. The feedback device is coupled to the controller and is configured to provide feedback associated with the robotic surgical system to a user. The controller is communicatively coupleable to the robotic surgical system and is configured to send robot control signals to the robotic surgical system, to receive feedback signals from the robotic surgical system, and to send feedback control signals to the feedback device to control the feedback provided to the user.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: August 22, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Barry C. Worrell, Geoffrey S. Strobl, Gregory A. Trees, Jonathan T. Batross, Nicholas G. Molitor, Kristen T. Shoger, David K. Norvell, Michael J. Andreyko, Gregory W. Johnson, Shawn C. Snyder
  • Patent number: 9730753
    Abstract: An electrosurgical device comprises a body, an end effector, a cutting member, and a shaft. The end effector includes a pair of jaws that are operable to deliver RF energy to tissue that is clamped between the jaws. The cutting member is operable to sever tissue that is clamped between the jaws. The shaft extends between the body and the end effector. The shaft includes an articulation section that is operable to selectively position the end effector at non-parallel positions relative to the longitudinal axis of the shaft. Some versions include a rotation section that is distal to the articulation section. The rotation section is operable to rotate the end effector relative to the articulation section.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: August 15, 2017
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Barry C. Worrell, David K. Norvell, Charles J. Scheib, Frederick E. Shelton, IV, Geoffrey S. Strobl, Jeffrey S. Swayze, Gregory A. Trees, Jason E. Zerkle, Kevin M. Montgomery
  • Patent number: 9675405
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: June 13, 2017
    Assignee: Ethicon LLC
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Publication number: 20170056097
    Abstract: A medical instrument is disclosed. The medical instrument includes at least one electrical contact element, a battery, a radio frequency (RF) generation circuit coupled to and operated by the battery and operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact, and a battery discharge circuit coupled to the battery. A processor is coupled to the battery discharge circuit and a memory is coupled to the processor. The memory stores machine executable instructions that when executed cause the processor to monitor activation of the RF generation circuit and disable the RF generation circuit when the RF drive signal is fired a predetermined number of times. The medical instrument may include an activation switch and/or a disposal switch supported by the housing.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 2, 2017
    Inventors: Gavin M. Monson, Gregory A. Trees, Gordon J. Leather, David J. Stocks, David A. Snowdon, John Hefin Bowen Evans, David I. Ruddenklau, Alan E. Green, Robin M. Lee, Paul C. Roberts, Paulo Alexandre da Torre Pinheiro, Clive Styler
  • Publication number: 20170020549
    Abstract: Surgical devices and methods are described herein that provide improved motor control and feedback, thereby combining advantages of manually-operated and powered surgical devices. In one embodiment, a surgical device includes a proximal handle portion that includes a motor, a distal end effector coupled to the handle portion, and a cutting element configured to cut tissue engaged by the end effector, wherein the motor is configured to supply power that moves the cutting element. The device also includes a motor control mechanism configured to cause the amount of the power to dynamically change in response to a manual user input when the cutting element is moving.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: Eric N. Johnson, Kevin L. Houser, David C. Yates, Rudolph H. Nobis, Chad P. Boudreaux, Gregory A. Trees, Geoffrey S. Strobl, Gavin M. Monson
  • Publication number: 20160317217
    Abstract: A surgical tool including a lockout mechanism is provided. The surgical tool may include an instrument mounting portion including a shaft assembly coupled to and extending distally from the instrument mounting portion and an end effector including a reciprocatable element coupled to a distal end of the shaft assembly. The surgical tool may further include an energy source configured to deliver energy to the end effector and an actuation mechanism configured to actuate the end effector. The actuation mechanism may be configured to reciprocate the reciprocatable element of the end effector. The lockout mechanism may be operably interfaced with the actuation mechanism to control reciprocating movement of the reciprocatable element.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 3, 2016
    Inventors: Jonathan T. Batross, Gregory A. Trees, Foster B. Stulen, Randolph Stewart, Chad P. Boudreaux
  • Publication number: 20160310208
    Abstract: An electrosurgical device comprises a body, an end effector, a cutting member, and a shaft. The end effector includes a pair of jaws that are operable to deliver RF energy to tissue that is clamped between the jaws. The cutting member is operable to sever tissue that is clamped between the jaws. The shaft extends between the body and the end effector. The shaft includes an articulation section that is operable to selectively position the end effector at non-parallel positions relative to the longitudinal axis of the shaft. Some versions include a rotation section that is distal to the articulation section. The rotation section is operable to rotate the end effector relative to the articulation section.
    Type: Application
    Filed: July 7, 2016
    Publication date: October 27, 2016
    Inventors: Barry C. Worrell, David K. Norvell, Charles J. Scheib, Frederick E. Shelton, IV, Geoffrey S. Strobl, Jeffrey S. Swayze, Gregory A. Trees, Jason E. Zerkle, Kevin M. Montgomery
  • Publication number: 20160302818
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. Pirozzi, II, Craig N. Faller, John B. Schulte, Kristen Denzinger, Joseph Hollo, Jason Sullivan, Brian Black, Frederick L. Estera, David A. Monroe, Stephen Leuck, Tylor C. Muhlenkamp, Gregory A. Trees
  • Patent number: 9468454
    Abstract: Surgical devices and methods are described herein that provide improved motor control and feedback, thereby combining advantages of manually-operated and powered surgical devices. In one embodiment, a surgical device includes a proximal handle portion that includes a motor, a distal end effector coupled to the handle portion, and a cutting element configured to cut tissue engaged by the end effector, wherein the motor is configured to supply power that moves the cutting element. The device also includes a motor control mechanism configured to cause the amount of the power to dynamically change in response to a manual user input when the cutting element is moving.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 18, 2016
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Eric N. Johnson, Kevin L. Houser, David C. Yates, Rudolph H. Nobis, Chad P. Boudreaux, Gregory A. Trees, Geoffrey S. Strobl, Gavin M. Monson
  • Patent number: 9402682
    Abstract: An electrosurgical device comprises a body, an end effector, a cutting member, and a shaft. The end effector includes a pair of jaws that are operable to deliver RF energy to tissue that is clamped between the jaws. The cutting member is operable to sever tissue that is clamped between the jaws. The shaft extends between the body and the end effector. The shaft includes an articulation section that is operable to selectively position the end effector at non-parallel positions relative to the longitudinal axis of the shaft. Some versions include a rotation section that is distal to the articulation section. The rotation section is operable to rotate the end effector relative to the articulation section.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: August 2, 2016
    Assignee: Ethicon Endo-Surgery, LLC
    Inventors: Barry C. Worrell, David K. Norvell, Charles J. Scheib, Frederick E. Shelton, IV, Geoffrey S. Strobl, Jeffrey S. Swayze, Gregory A. Trees, Jason E. Zerkle, Kevin M. Montgomery