Patents by Inventor Gregory A. Trees

Gregory A. Trees has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200022724
    Abstract: Various embodiments of surgical robot control systems are disclosed. In one example embodiment, the surgical robot control system comprises a housing. A controller is located within the housing and is coupled to a socket. The socket receives a handheld surgical user interface therein to control a surgical instrument. The surgical instrument is connected to the surgical robot and comprises an end effector and a mechanical interface to manipulate the end effector. The mechanical interface is coupled to the controller. At least one sensor is coupled to the controller and the socket to convert movement of the handheld surgical user interface into electrical signals corresponding to the movement of the surgical instrument. At least one feedback device is coupled to the controller to provide feedback to a user. The feedback is associated with a predetermined function of the surgical instrument.
    Type: Application
    Filed: May 24, 2019
    Publication date: January 23, 2020
    Inventors: Barry C. Worrell, Geoffrey S. Strobl, Gregory A. Trees, Jonathan T. Batross, Nicholas G. Molitor, Kristen T. Shoger, David K. Norvell, Michael J. Andreyko, Gregory W. Johnson, Shawn C. Snyder, Chad P. Boudreaux
  • Patent number: 10537382
    Abstract: Instruments and methods for providing selective surgical instrument trigger lockout are provided herein. In one embodiment, a surgical instrument can include a distal end effector, a proximal actuator portion, a first trigger, a second trigger, and a lock arm. The lock arm can be configured to move between a first position, in which it interferes with actuation of the first trigger, and a second position, in which it permits actuation of the first trigger. Further, actuation of the second trigger can be effective to move the lock arm from the first position to the second position. Actuation of the first trigger can therefore be prevented if the second trigger is not already actuated. Selective trigger lockout can be useful in a variety of instruments, including, for example, surgical instruments that grasp, seal, and transect tissue.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: January 21, 2020
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, Gregory A. Trees, Geoffrey S. Strobl
  • Publication number: 20200015883
    Abstract: A surgical tool and control system therefor is provided. The surgical tool can include an instrument mount configured to engage with a robotic manipulator assembly, which can include a gear assembly configured to be actuated by the robotic manipulator assembly. The surgical tool can include an end effector coupled to the gear assembly, which is configured to be actuated by the gear assembly. The surgical tool can include a lockout configured to transition between a first state in which the lockout is physically engaged with the gear assembly to prevent a movement thereof and a second state in which the lockout is disengaged from the gear assembly. The surgical tool can include a control circuit configured to determine whether the end effector is in an energized state or a de-energized state and in the energized state, cause the lockout to transition between the first state and the second state.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 16, 2020
    Inventors: Jonathan T. Batross, Gregory A. Trees, Foster B. Stulen, Randolph C. Stewart, Chad P. Boudreaux
  • Patent number: 10463421
    Abstract: A surgical instrument includes a handle assembly and an end effector. The handle assembly includes a trigger, a push plate coupled to the trigger, wherein actuation of the trigger rotates the push plate, a clamp plate operably coupled to the push plate, wherein actuation of the trigger to a first rotation rotates the clamp plate, and a firing plate operably coupled to the push plate, wherein actuation of the trigger between the first rotation and a second rotation rotates the firing plate. The end effector includes a jaw assembly which includes a first jaw member and a second jaw member, wherein rotation of the clamp plate transitions the jaw assembly between an open configuration and an approximated configuration by moving at least one of the first jaw member and the second jaw member relative to the other one of the first jaw member and the second jaw member.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: November 5, 2019
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, John M. Sarley, Gregory A. Trees, Catherine A. Corbett
  • Publication number: 20190274706
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating and controlling a state of an end effector of an ultrasonic device are disclsoed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ? ( t ) = V g ? ( t ) I g ? ( t ) . The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: September 27, 2018
    Publication date: September 12, 2019
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita S. Sawhney, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Eric M. Roberson, Stephen M. Leuck, James M. Wilson
  • Publication number: 20190274703
    Abstract: Surgical devices and methods are described herein that provide improved motor control and feedback, thereby combining advantages of manually-operated and powered surgical devices. In one embodiment, a surgical device includes a proximal handle portion that includes a motor, a distal end effector coupled to the handle portion, and a cutting element configured to cut tissue engaged by the end effector, wherein the motor is configured to supply power that moves the cutting element. The device also includes a motor control mechanism configured to cause the amount of the power to dynamically change in response to a manual user input when the cutting element is moving.
    Type: Application
    Filed: May 23, 2019
    Publication date: September 12, 2019
    Inventors: Eric N. Johnson, Gregory A. Trees, Geoffrey S. Strobl
  • Publication number: 20190274749
    Abstract: An ultrasonic device may include an electromechanical ultrasonic system defined by a predetermined resonant frequency and include an ultrasonic transducer coupled to an ultrasonic blade. A method of delivering energy to the device may include applying energy to the blade at a first power level via the transducer coupled to the blade, measuring a complex impedance of the transducer, receiving a complex impedance feedback data point, comparing the complex impedance feedback data point to a reference complex impedance characteristic pattern, and determining that the blade is contacting a vessel based on the comparison. The method may also include disabling the power applied to the transducer and switching to a lower power level. The method may further include generating a warning that the blade is contacting a vessel, such as a light or a sound. An ultrasonic surgical instrument may effect the method.
    Type: Application
    Filed: September 27, 2018
    Publication date: September 12, 2019
    Inventors: John E. Brady, Gregory A. Trees
  • Patent number: 10398497
    Abstract: A surgical tool including a lockout mechanism is provided. The surgical tool may include an instrument mounting portion including a shaft assembly coupled to and extending distally from the instrument mounting portion and an end effector including a reciprocatable element coupled to a distal end of the shaft assembly. The surgical tool may further include an energy source configured to deliver energy to the end effector and an actuation mechanism configured to actuate the end effector. The actuation mechanism may be configured to reciprocate the reciprocatable element of the end effector. The lockout mechanism may be operably interfaced with the actuation mechanism to control reciprocating movement of the reciprocatable element.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: September 3, 2019
    Assignee: Ethicon LLC
    Inventors: Jonathan T. Batross, Gregory A. Trees, Foster B. Stulen, Randolph Stewart, Chad P. Boudreaux
  • Patent number: 10357311
    Abstract: A surgical instrument includes a body, an elongate shaft extending distally from the body, an end effector disposed at a distal end of the elongate shaft, and a firing beam. The end effector has a first jaw and a second jaw. The first jaw is pivotable toward and away from the second jaw to capture tissue. The end effector further comprises at least one electrode. The at least one electrode is operable to apply RF energy to tissue captured between the first jaw and the second jaw.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 23, 2019
    Assignee: Ethicon LLC
    Inventors: Susan Arshonsky, Catherine A. Corbett, Megan A. Broderick, Geoffrey S. Strobl, Gregory A. Trees
  • Publication number: 20190209201
    Abstract: Various embodiments described herein are directed to surgical instruments with visual feedback. In one embodiment, a surgical instrument with visual feedback comprises an end effector. The end effector has a first jaw member and a second jaw member. At least one sensor is coupled to the end effector. The at least one sensor is configured convert at least one state of the end effector to a feedback signal. The feedback signal is corresponding to the at least one state of the end effector. The feedback signal may be transmitted to a display to render a visual representation of the at least one state of the end effector. The surgical instrument may further comprise an instrument mounting portion to mount to a robotic surgical system. The instrument mounting portion comprises an interface to mechanically and electrically interface to the surgical instrument.
    Type: Application
    Filed: December 21, 2018
    Publication date: July 11, 2019
    Inventors: Chad P. Boudreaux, Gregory W. Johnson, Kristen T. Shoger, Nicholas G. Molitor, Randolph C. Stewart, Gregory A. Trees, David K. Norvell, Michael J. Andreyko, Shawn C. Snyder, Jonathan T. Batross, Megan A. O'Connor
  • Publication number: 20190201073
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ? ( t ) = V g ? ( t ) I g ? ( t ) . The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: August 28, 2018
    Publication date: July 4, 2019
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita Singh Sawhney, Rafael J. Ruiz Ortiz, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell Rockman, Gregory D. Bishop, Frederick E. Shelton, IV, David C. Yates
  • Publication number: 20190201046
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Application
    Filed: December 4, 2018
    Publication date: July 4, 2019
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, Foster B. Stulen, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Jeffrey D. Messerly, Fergus P. Quigley, Tamara Widenhouse
  • Publication number: 20190201038
    Abstract: Various systems and methods for determining the composition of tissue via an ultrasonic surgical instrument are disclosed. A control circuit can be configured to monitor the change in resonant frequency of an ultrasonic electromechanical system of the ultrasonic surgical instrument as the ultrasonic blade oscillates against a tissue and determine the composition of the tissue accordingly. In some aspects, the control circuit can be configured to modify the operation of the ultrasonic electromechanical system or other operational parameters of the ultrasonic surgical instrument according to the detected tissue composition.
    Type: Application
    Filed: August 28, 2018
    Publication date: July 4, 2019
    Inventors: David C. Yates, Jason L. Harris, Frederick E. Shelton, IV, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black
  • Patent number: 10335180
    Abstract: Surgical devices and methods are described herein that provide improved motor control and feedback, thereby combining advantages of manually-operated and powered surgical devices. In one embodiment, a surgical device includes a proximal handle portion that includes a motor, a distal end effector coupled to the handle portion, and a cutting element configured to cut tissue engaged by the end effector, wherein the motor is configured to supply power that moves the cutting element. The device also includes a motor control mechanism configured to cause the amount of the power to dynamically change in response to a manual user input when the cutting element is moving.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 2, 2019
    Assignee: Ethicon LLC
    Inventors: Eric N. Johnson, Kevin L. Houser, David C. Yates, Rudolph H. Nobis, Chad P. Boudreaux, Gregory A. Trees, Geoffrey S. Strobl, Gavin M. Monson
  • Patent number: 10335183
    Abstract: A control system for a surgical robot is disclosed. The control system includes a controller, a sensor, a feedback device, a first socket, and a stand-alone input device. The handheld user interface may control a function of a robotic surgical system and is coupled to the sensor and the controller. The sensor is coupled to the controller. The feedback device is coupled to the controller and is configured to provide feedback associated with the robotic surgical system to a user. The controller is communicatively coupleable to the robotic surgical system and is configured to send robot control signals to the robotic surgical system, to receive feedback signals from the robotic surgical system, and to send feedback control signals to the feedback device to control the feedback provided to the user. The controller is configured to couple to a stand-alone input device through the first socket.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: July 2, 2019
    Assignee: Ethicon LLC
    Inventors: Barry C. Worrell, Geoffrey S. Strobl, Gregory A. Trees, Jonathan T. Batross, Nicholas G. Molitor, Kristen T. Shoger, David K. Norvell, Michael J. Andreyko, Gregory W. Johnson, Shawn C. Snyder
  • Publication number: 20190105067
    Abstract: In various embodiments, a surgical instrument is disclosed. The surgical instrument comprises a handle assembly having a closure trigger, a closure actuator coupled to the closure trigger at a first pivot, and a closure spring. The closure actuator moves proximally on a longitudinal axis in response to actuation of the closure trigger. The closure spring applies a force vector to the closure spring tangential to the longitudinal axis. A shaft assembly is coupled to the handle assembly. An end effector is coupled to a distal end of the shaft assembly. The end effector comprises a jaw assembly comprising a first jaw member and a second jaw member. The first jaw member is pivotally moveable with respect to the second jaw member. At least one of the first and second jaw members are operatively coupled to the closure actuator.
    Type: Application
    Filed: October 5, 2018
    Publication date: April 11, 2019
    Inventors: Chad P. Boudreaux, Catherine A. Corbett, Gregory A. Trees, Scott R. Bingham
  • Patent number: 10201365
    Abstract: Various embodiments described herein are directed to surgical instruments with visual feedback. In one embodiment, a surgical instrument with visual feedback comprises an end effector. The end effector has a first jaw member and a second jaw member. At least one sensor is coupled to the end effector. The at least one sensor is configured convert at least one state of the end effector to a feedback signal. The feedback signal is corresponding to the at least one state of the end effector. The feedback signal may be transmitted to a display to render a visual representation of the at least one state of the end effector. The surgical instrument may further comprise an instrument mounting portion to mount to a robotic surgical system. The instrument mounting portion comprises an interface to mechanically and electrically interface to the surgical instrument.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: February 12, 2019
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, Gregory W. Johnson, Kristen T. Shoger, Nicholas G. Molitor, Randolph Stewart, Gregory A. Trees, David K. Norvell, Michael J. Andreyko, Shawn C. Snyder, Jonathan T. Batross, Megan A. O'Connor
  • Patent number: 10092310
    Abstract: In various embodiments, a surgical instrument is disclosed. The surgical instrument comprises a handle assembly having a closure trigger, a closure actuator coupled to the closure trigger at a first pivot, and a closure spring. The closure actuator moves proximally on a longitudinal axis in response to actuation of the closure trigger. The closure spring applies a force vector to the closure spring tangential to the longitudinal axis. A shaft assembly is coupled to the handle assembly. An end effector is coupled to a distal end of the shaft assembly. The end effector comprises a jaw assembly comprising a first jaw member and a second jaw member. The first jaw member is pivotally moveable with respect to the second jaw member. At least one of the first and second jaw members are operatively coupled to the closure actuator.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: October 9, 2018
    Assignee: Ethicon LLC
    Inventors: Chad P. Boudreaux, Catherine A. Corbett, Gregory A. Trees, Scott R. Bingham
  • Publication number: 20180280076
    Abstract: Methods and devices for controlling motorized surgical devices are provided. In general, the methods and devices can allow a surgical device to grasp and cut tissue. In some embodiments, the device can include at least one sensor and a motor, and an output of the motor can be configured to be adjusted based at least in part on an output from the at least one sensor. The output of the motor can be configured to provide power for translation of a cutting element along an end effector of the device. Adjusting the motor's output can cause the cutting element to translate through the end effector at different speeds, thereby allowing the cutting element to cut through tissue being grasped by the end effector at different speeds.
    Type: Application
    Filed: April 27, 2018
    Publication date: October 4, 2018
    Inventors: Gregory A. Trees, Chad P. Boudreaux, Matthew C. Miller, Mark A. Davison, David C. Yates, John A. Hibner, Jill A. Inkrott-Smith
  • Publication number: 20180280075
    Abstract: An electrosurgical system includes an RF current generator, a handle body, and an end effector. The end effector may include a first and a second energy delivery surface. At least a portion of either first or second energy delivery surfaces, or both, may include one or more patterned coatings of an electrically non-conducting non-stick material. The material may be deposited on a surface of, within a depression in, or on features extending from the energy surfaces, or through an overmolding process. The patterned coating may be formed from a coating of the material from which portions have been removed. An energy delivery surface has a first area, and the patterned coating has a second area. A ratio of the second area to the first area may be less than or equal to about 0.9, less than or equal to about 0.7, or less than or equal to about 0.5.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventors: Cameron R. Nott, Gregory A. Trees