Patents by Inventor Gregory Alan Fish

Gregory Alan Fish has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180267241
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 20, 2018
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20180217413
    Abstract: Embodiments of the invention describe systems, apparatuses and methods for providing athermicity and a tunable spectral response for optical filters. Finite impulse response (FIR) filters are commonly implemented in photonic integrated circuits (PICs) to make devices such as wavelength division multiplexing (WDM) devices, asymmetric Mach-Zehnder interferometers (AMZIs) and array waveguide gratings (AWGs). Athermicity of an FIR filter describes maintaining a consistent frequency transmission spectrum as the ambient temperature changes. A tunable spectral response for an FIR filter describes changing the spectrum of an FIR filter based on its application, as well as potentially correcting for fabrication deviations from the design. In addition, embodiments of the invention reduce energy dissipation requirements and control complexity compared to prior art solutions.
    Type: Application
    Filed: March 15, 2018
    Publication date: August 2, 2018
    Inventors: Jonathan Edgar Roth, Daniel Knight Sparacin, Gregory Alan Fish
  • Publication number: 20180203188
    Abstract: Methods and systems are presented for heterogeneous integration of photonics and electronics with atomic layer deposition (ALD) bonding. One method includes operations for forming a compound semiconductor and for depositing (e.g., via atomic layer deposition) a continuous film of a protection material (e.g., Al2O3) on a first surface of the compound semiconductor. Further, the method includes an operation for forming a silicon on insulator (SOI) wafer, with the SOI wafer comprising one or more waveguides. The method further includes bonding the compound semiconductor at the first surface to the SOI wafer to form a bonded structure and processing the bonded structure. The protection material protects the compound semiconductor from acid etchants during further processing of the bonded structure.
    Type: Application
    Filed: January 18, 2017
    Publication date: July 19, 2018
    Inventors: John Parker, Gregory Alan Fish, Martin A. Spannagel, Antonio Labaro
  • Patent number: 10014658
    Abstract: Described herein are photonic integrated circuits (PICs) comprising a semiconductor optical amplifier (SOA) to output a signal comprising a plurality of wavelengths, a sensor to detect data associated with a power value of each wavelength of the output signal of the SOA, a filter to filter power values of one or more of the wavelengths of the output signal of the SOA, and control circuitry to control the filter to reduce a difference between a pre-determined power value of each filtered wavelength of the output signal of the SOA and the detected power value of each filtered wavelength of the output signal of the SOA.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: July 3, 2018
    Assignee: Aurrion, Inc.
    Inventors: Erik Johan Norberg, John M. Garcia, Brian Koch, Gregory Alan Fish
  • Patent number: 10007058
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 26, 2018
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Patent number: 10007074
    Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: June 26, 2018
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Brian R. Koch
  • Patent number: 10007167
    Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: June 26, 2018
    Assignee: Aurrion, Inc.
    Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
  • Publication number: 20180138658
    Abstract: Described herein are methods, systems, and apparatuses to utilize a semiconductor optical amplifier (SOA) comprising a silicon layer including a silicon waveguide, a non-silicon layer disposed on the silicon layer and including a non-silicon waveguide, first and second mode transition region comprising tapers in the silicon waveguide and/or the non-silicon waveguide for exchanging light between the waveguide, and a plurality of regions disposed between the first and second mode transition regions comprising different cross-sectional areas of the silicon waveguide and the non-silicon waveguide such that confinement factors for the non-silicon waveguide in each of the plurality of regions differ.
    Type: Application
    Filed: November 7, 2017
    Publication date: May 17, 2018
    Inventors: Erik Norberg, Brian R. Koch, Gregory Alan Fish
  • Patent number: 9964703
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: May 8, 2018
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20180113255
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Patent number: 9952455
    Abstract: Embodiments of the invention describe systems, apparatuses and methods for providing athermicity and a tunable spectral response for optical filters. Finite impulse response (FIR) filters are commonly implemented in photonic integrated circuits (PICs) to make devices such as wavelength division multiplexing (WDM) devices, asymmetric Mach-Zehnder interferometers (AMZIs) and array waveguide gratings (AWGs). Athermicity of an FIR filter describes maintaining a consistent frequency transmission spectrum as the ambient temperature changes. A tunable spectral response for an FIR filter describes changing the spectrum of an FIR filter based on its application, as well as potentially correcting for fabrication deviations from the design. In addition, embodiments of the invention reduce energy dissipation requirements and control complexity compared to prior art solutions.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: April 24, 2018
    Assignee: Aurrion, Inc.
    Inventors: Jonathan Edgar Roth, Daniel Knight Sparacin, Gregory Alan Fish
  • Publication number: 20180102627
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Application
    Filed: August 29, 2017
    Publication date: April 12, 2018
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20180102628
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Application
    Filed: August 29, 2017
    Publication date: April 12, 2018
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20180100967
    Abstract: Described are various configurations of integrated wavelength lockers including asymmetric Mach-Zehnder interferometers (AMZIs) and associated detectors. Various embodiments provide improved wavelength-locking accuracy by using an active tuning element in the AMZI to achieve an operational position with high locking sensitivity, a coherent receiver to reduce the frequency-dependence of the locking sensitivity, and/or a temperature sensor and/or strain gauge to computationally correct for the effect of temperature or strain changes.
    Type: Application
    Filed: August 29, 2017
    Publication date: April 12, 2018
    Inventors: John Parker, Jared Bauters, Jonathan Edgar Roth, Erik Norberg, Gregory Alan Fish
  • Publication number: 20180088290
    Abstract: Embodiments of the invention describe optical devices including a III-V slab having a taper including a first region and a second region smaller than the first. Said first region receives light and confines an optical mode of the received light; thus, as opposed to the prior art solutions, said III-V regions of optical devices perform the optical function of mode confinement. Embodiments of the invention further describe optical devices including a silicon slab to receive light from said III-V slab, and having a taper including a first silicon region and a second silicon region smaller than the first. Said first region receives light and confines an optical mode of the received light. Thus, embodiments of the invention describe optical devices created with a low loss transition from hybrid regions to silicon regions with fewer restrictions on the design of the silicon waveguides and the III-V waveguides.
    Type: Application
    Filed: November 21, 2017
    Publication date: March 29, 2018
    Inventors: Gregory Alan Fish, Jae Shin
  • Publication number: 20180045566
    Abstract: Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 15, 2018
    Inventors: Gregory Alan Fish, Jonathan Edgar Roth, Brandon Buckley
  • Patent number: 9880353
    Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: January 30, 2018
    Assignee: Aurrion, Inc.
    Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
  • Publication number: 20170366880
    Abstract: Embodiments describe transceiver architectures to enable ‘loopback’ operation, thereby allowing or on-chip or intra module characterization of the transceiver. This includes but is not limited to tests such as bit error rate (BER) characterization, received power characterization and calibration of filters (MUX, DMUX etc.) present in the transceiver. Embodiments may also describe architectures for superimposing low-speed data on to the signal coming out of a transmitter, which in turn enables low frequency communication between network elements in the external link.
    Type: Application
    Filed: May 19, 2017
    Publication date: December 21, 2017
    Applicant: Aurrion, Inc.
    Inventors: John M. Garcia, Anand Ramaswamy, Gregory Alan Fish
  • Patent number: 9846285
    Abstract: Embodiments of the invention describe optical devices including a III-V slab having a taper including a first region and a second region smaller than the first. Said first region receives light and confines an optical mode of the received light; thus, as opposed to the prior art solutions, said III-V regions of optical devices perform the optical function of mode confinement. Embodiments of the invention further describe optical devices including a silicon slab to receive light from said III-V slab, and having a taper including a first silicon region and a second silicon region smaller than the first. Said first region receives light and confines an optical mode of the received light. Thus, embodiments of the invention describe optical devices created with a low loss transition from hybrid regions to silicon regions with fewer restrictions on the design of the silicon waveguides and the III-V waveguides.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 19, 2017
    Assignee: Aurrion, Inc.
    Inventors: Gregory Alan Fish, Jae Shin
  • Patent number: 9825429
    Abstract: Described herein are methods, systems, and apparatuses to utilize a semiconductor optical amplifier (SOA) comprising a silicon layer including a silicon waveguide, a non-silicon layer disposed on the silicon layer and including a non-silicon waveguide, first and second mode transition region comprising tapers in the silicon waveguide and/or the non-silicon waveguide for exchanging light between the waveguide, and a plurality of regions disposed between the first and second mode transition regions comprising different cross-sectional areas of the silicon waveguide and the non-silicon waveguide such that confinement factors for the non-silicon waveguide in each of the plurality of regions differ.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: November 21, 2017
    Assignee: AURRION, INC.
    Inventors: Erik Norberg, Brian R. Koch, Gregory Alan Fish