Patents by Inventor Gregory D. Davis

Gregory D. Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200002722
    Abstract: The present invention provides methods for modifying chromosomal sequences. In particular, methods are provided for using RNA-guided endonucleases or modified RNA-guided endonucleases to modify targeted chromosomal sequences.
    Type: Application
    Filed: September 3, 2019
    Publication date: January 2, 2020
    Inventors: Fuqiang Chen, Gregory D. Davis
  • Patent number: 10508894
    Abstract: A tool for measuring dimensions of disc brake components has an elongated first member. The elongated first member has a first tip extending transversely from the first member. The first tip has a first projection at an end portion of the first tip. An elongated second member is relatively movable to first member. The second member has a second tip extending transversely from the second member in the same direction as the first tip of the first member. The second tip has a second projection at an end portion of the second tip and extends in a direction towards the first projection. First indicia are provided on the first and second members to indicate the relative distance between the first and second projections when measuring an object located between the first and second projections.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: December 17, 2019
    Assignee: Hendrickson USA, L.L.C.
    Inventors: Jay D. White, Gregory W. Dvorchak, Ronald W. Davis, Jr.
  • Patent number: 10463851
    Abstract: An implantable stimulation system comprises a stimulator for generating electrical stimulation and a conductive stimulation lead having a proximal end electrically coupled to the stimulator, wherein at least a first component of the impedance looking into the stimulator is substantially matched to the impedance of the stimulation lead. At least one distal stimulation electrode is positioned proximate the distal end of the stimulation lead.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: November 5, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Piotr Przybyszewski, Carl D. Wahlstrand, Timothy J. Davis, Gregory A. Hrdlicka, James M. Olsen
  • Publication number: 20190316102
    Abstract: Paired CRISPR nickase ribonucleoproteins engineered to target immune-related genomic loci and methods of using said ribonucleoproteins to modify the immune-related genomic loci.
    Type: Application
    Filed: April 12, 2019
    Publication date: October 17, 2019
    Applicant: SIGMA-ALDRICH CO. LLC
    Inventors: Qingzhou Ji, Gregory D. Davis, Jacob T. Lamberth
  • Publication number: 20190271041
    Abstract: The present disclosure provides genetically engineered cell lines comprising chromosomally integrated synthetic sequences having predetermined epigenetic modifications, wherein a predetermined epigenetic modification is correlated with a known diagnosis, prognosis or level of sensitivity to a disease treatment. Also provided are kits comprising said epigenetically modified synthetic nucleic acids or cells comprising said epigenetically modified synthetic nucleic acids that can be used as reference standards for predicting responsiveness to therapeutic treatments, diagnosing diseases, or predicting disease prognosis.
    Type: Application
    Filed: January 14, 2019
    Publication date: September 5, 2019
    Inventors: Gregory D. Davis, Qiaohua Kang
  • Publication number: 20190249200
    Abstract: Engineered Cas9 systems that utilize alternate protospacer adjacent motifs for target DNA binding, nucleic acids encoding said engineered Cas9 systems, and methods of using said engineered Cas9 systems for modifying target chromosomal sequences in eukaryotic cells.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 15, 2019
    Inventors: Timothy Seebeck, Fuqiang Chen, Gregory D. Davis
  • Publication number: 20190202856
    Abstract: CRISPR proteins engineered to form covalent bonds with 5? phosphates in target nucleic acids and methods of using CRISPR systems comprising said engineered CRISPR proteins to covalently tag nucleic acids.
    Type: Application
    Filed: December 14, 2018
    Publication date: July 4, 2019
    Inventors: Gregory D. Davis, Daniel Taglicht, Fuqiang Chen
  • Publication number: 20190017042
    Abstract: Compositions and methods for using nucleosome interacting protein domains to increase accessibility of programmable DNA modification proteins to target chromosomal sequences, thereby increasing efficiency of targeted genome/epigenetic modification in eukaryotic cells.
    Type: Application
    Filed: July 10, 2018
    Publication date: January 17, 2019
    Inventors: Fuqiang Chen, Xiao Ding, Yongmei Feng, Gregory D. Davis
  • Publication number: 20180340221
    Abstract: The present disclosure provides reagents and methods for molecular proximity detection of specific endogenous nucleic acids in situ using RNA-guided nucleic acid binding proteins.
    Type: Application
    Filed: September 23, 2016
    Publication date: November 29, 2018
    Applicant: SIGMA-ALDRICH CO. LLC
    Inventors: Gregory D Davis, Vikas B Palhan, Carol A. Kreader
  • Publication number: 20180135073
    Abstract: The present invention provides methods for modifying chromosomal sequences. In particular, methods are provided for using RNA-guided endonucleases or modified RNA-guided endonucleases to modify targeted chromosomal sequences.
    Type: Application
    Filed: July 18, 2017
    Publication date: May 17, 2018
    Inventors: Fuqiang Chen, Gregory D. Davis
  • Publication number: 20170191082
    Abstract: The present invention provides RNA-guided endonucleases, which are engineered for expression in eukaryotic cells or embryos, and methods of using the RNA-guided endonuclease for targeted genome modification in eukaryotic cells or embryos. Also provided are fusion proteins, wherein each fusion protein comprises a CRISPR/Cas-like protein or fragment thereof and an effector domain. The effector domain can be a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Also provided are methods for using the fusion proteins to modify a chromosomal sequence or regulate expression of a chromosomal sequence.
    Type: Application
    Filed: March 10, 2017
    Publication date: July 6, 2017
    Inventors: Fuqiang CHEN, Gregory D. DAVIS
  • Publication number: 20170073705
    Abstract: The present invention provides RNA-guided endonucleases, which are engineered for expression in eukaryotic cells or embryos, and methods of using the RNA-guided endonuclease for targeted genome modification in in eukaryotic cells or embryos. Also provided are fusion proteins, wherein each fusion protein comprises a CRISPR/Cas-like protein or fragment thereof and an effector domain. The effector domain can be a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Also provided are methods for using the fusion proteins to modify a chromosomal sequence or regulate expression of a chromosomal sequence.
    Type: Application
    Filed: November 3, 2016
    Publication date: March 16, 2017
    Inventors: Fuqiang CHEN, Gregory D. DAVIS, Qiaohua KANG, Scott W. KNIGHT
  • Publication number: 20170051354
    Abstract: The present disclosure provides genetically engineered cell lines comprising chromosomally integrated synthetic sequences having predetermined epigenetic modifications, wherein a predetermined epigenetic modification is correlated with a known diagnosis, prognosis or level of sensitivity to a disease treatment. Also provided are kits comprising said epigenetically modified synthetic nucleic acids or cells comprising said epigenetically modified synthetic nucleic acids that can be used as reference standards for predicting responsiveness to therapeutic treatments, diagnosing diseases, or predicting disease prognosis.
    Type: Application
    Filed: April 24, 2015
    Publication date: February 23, 2017
    Applicant: SIGMA-ALDRICH CO. LLC
    Inventors: Gregory D. DAVIS, Qiaohua KANG
  • Publication number: 20160376610
    Abstract: Fusion protein comprising a programmable DNA modification protein and a cell cycle regulated protein, and methods of using the fusion protein to modify chromosomal sequences and/or regulate gene expression in a cell cycle dependent manner.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 29, 2016
    Inventors: Gregory D. Davis, Qingzhou Ji, Carol A. Kreader
  • Patent number: 9512444
    Abstract: The present invention provides methods and kits for editing specific chromosomal sequences in cells. In particular, targeting endonucleases and single-stranded nucleic acids are used to edit the chromosomal sequence.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: December 6, 2016
    Assignee: Sigma-Aldrich Co. LLC
    Inventors: Fuqiang Chen, Shondra M. Pruett-Miller, Gregory D. Davis
  • Publication number: 20160298138
    Abstract: The present invention provides RNA-guided endonucleases, which are engineered for expression in eukaryotic cells or embryos, and methods of using the RNA-guided endonuclease for targeted genome modification in in eukaryotic cells or embryos. Also provided are fusion proteins, wherein each fusion protein comprises a CRISPR/Cas-like protein or fragment thereof and an effector domain. The effector domain can be a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Also provided are methods for using the fusion proteins to modify a chromosomal sequence or regulate expression of a chromosomal sequence.
    Type: Application
    Filed: June 21, 2016
    Publication date: October 13, 2016
    Inventors: Fuqiang CHEN, Gregory D. DAVIS, Qiaohua KANG, Scott W. KNIGHT
  • Publication number: 20160298136
    Abstract: The present invention provides RNA-guided endonucleases, which are engineered for expression in eukaryotic cells or embryos, and methods of using the RNA-guided endonuclease for targeted genome modification in in eukaryotic cells or embryos. Also provided are fusion proteins, wherein each fusion protein comprises a CRISPR/Cas-like protein or fragment thereof and an effector domain. The effector domain can be a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Also provided are methods for using the fusion proteins to modify a chromosomal sequence or regulate expression of a chromosomal sequence.
    Type: Application
    Filed: June 21, 2016
    Publication date: October 13, 2016
    Inventors: Fuqiang CHEN, Gregory D. DAVIS, Qiaohua KANG, Scott W. KNIGHT
  • Publication number: 20160298137
    Abstract: The present invention provides RNA-guided endonucleases, which are engineered for expression in eukaryotic cells or embryos, and methods of using the RNA-guided endonuclease for targeted genome modification in in eukaryotic cells or embryos. Also provided are fusion proteins, wherein each fusion protein comprises a CRISPR/Cas-like protein or fragment thereof and an effector domain. The effector domain can be a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Also provided are methods for using the fusion proteins to modify a chromosomal sequence or regulate expression of a chromosomal sequence.
    Type: Application
    Filed: June 21, 2016
    Publication date: October 13, 2016
    Inventors: Fuqiang CHEN, Gregory D. DAVIS, Qiaohua KANG, Scott W. KNIGHT
  • Publication number: 20160298133
    Abstract: The present invention provides RNA-guided endonucleases, which are engineered for expression in eukaryotic cells or embryos, and methods of using the RNA-guided endonuclease for targeted genome modification in in eukaryotic cells or embryos. Also provided are fusion proteins, wherein each fusion protein comprises a CRISPR/Cas-like protein or fragment thereof and an effector domain. The effector domain can be a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Also provided are methods for using the fusion proteins to modify a chromosomal sequence or regulate expression of a chromosomal sequence.
    Type: Application
    Filed: June 21, 2016
    Publication date: October 13, 2016
    Inventors: Fuqiang CHEN, Gregory D. DAVIS, Qiaohua KANG, Scott W. KNIGHT
  • Publication number: 20160298135
    Abstract: The present invention provides RNA-guided endonucleases, which are engineered for expression in eukaryotic cells or embryos, and methods of using the RNA-guided endonuclease for targeted genome modification in in eukaryotic cells or embryos. Also provided are fusion proteins, wherein each fusion protein comprises a CRISPR/Cas-like protein or fragment thereof and an effector domain. The effector domain can be a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Also provided are methods for using the fusion proteins to modify a chromosomal sequence or regulate expression of a chromosomal sequence.
    Type: Application
    Filed: June 21, 2016
    Publication date: October 13, 2016
    Inventors: Fuqiang CHEN, Gregory D. DAVIS, Qiaohua KANG, Scott W. KNIGHT