Patents by Inventor Gregory F. Molnar

Gregory F. Molnar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180318579
    Abstract: An active implantable medical device configured for chronic implant in a patient includes a housing. At least one of a radio frequency (RF) module configured to generate a therapeutic output signal in a form of a pulsed a RF signal, and deliver the signal to neural tissue of the patient, and a health information module configured to collect information directed to a mechanical integrity of an orthopedic implant device and an activity of the patient, is located within the housing. The housing is configured to be associated with an orthopedic implanted device through attachment to a piece of implant hardware, or engagement with a passageway through the orthopedic implanted device. Alternatively, an active implantable medical device is incorporated and integrated into a component of an orthopedic implanted device.
    Type: Application
    Filed: October 6, 2017
    Publication date: November 8, 2018
    Inventors: Harry Puryear, Timothy J. Cox, Serafin Y. Samson, Nazmi Peyman, Omid Souresrafil, Gregory F. Molnar
  • Publication number: 20180317771
    Abstract: Radio frequency (RF) energy is transmitted through the application of a RF signal to an external RF energy interface, where the RF signal oscillates at a frequency in an energy transmission band. The transmitted RF energy is received at an implanted medical device, and energy derived from the received RF energy is stored in a direct current (DC) energy storage component of the device. A therapeutic output signal is generated from the stored energy and delivered by the implantable medical device to a patient through one or more electrodes. The therapeutic output signal is configurable to provide either one of RF stimulation therapy and RF ablation therapy, and comprises pulses of an RF signal oscillating at a frequency in a therapy band that is greater than the energy transmission band.
    Type: Application
    Filed: October 6, 2017
    Publication date: November 8, 2018
    Inventors: Harry Puryear, Timothy J. Cox, Serafin Y. Samson, Nazmi Peyman, Omid Souresrafil, Gregory F. Molnar
  • Patent number: 10117580
    Abstract: Radio frequency (RF) energy is transmitted through the application of a RF signal to an external RF energy interface, where the RF signal oscillates at a frequency in an energy transmission band. The transmitted RF energy is received at an implanted medical device, and energy derived from the received RF energy is stored in a direct current (DC) energy storage component of the device. A therapeutic output signal is generated from the stored energy and delivered by the implantable medical device to a patient through one or more electrodes. The therapeutic output signal is configurable to provide either one of RF stimulation therapy and RF ablation therapy, and comprises pulses of an RF signal oscillating at a frequency in a therapy band that is greater than the energy transmission band.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: November 6, 2018
    Assignee: SynerFuse, Inc.
    Inventors: Harry Puryear, Timothy J. Cox, Serafin Y. Samson, Nazmi Peyman, Omid Souresrafil, Gregory F. Molnar
  • Publication number: 20180185649
    Abstract: Systems and methods are provided for neuromodulation with simultaneous stimulation and reception of neuronal response. A closed-loop control system provides the ability to modulate any combination of at least five parameters of stimulation (magnitude, frequency, amplitude, time, and phase) based on any combination of at least five parameters of received signals. The neuromodulation is well-suited for deep brain stimulation (DBS) applications.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 5, 2018
    Inventors: Shalom Michaeli, John T. Vaughan, Silvia Mangia, Lauri Lehto, Matthew Johnson, Julia Slopsema, Olli Gröhn, Gregory F. Molnar
  • Publication number: 20170311878
    Abstract: Therapy delivery to a patient may be controlled based on a determined sleep stage of the patient. In examples, the sleep stage may be determined based on a frequency characteristic of a biosignal indicative of brain activity of the patient. A frequency characteristic may include, for example, a power level within one or more frequency bands of the biosignal, a ratio of the power level in two or more frequency bands, or a pattern in the power level of one or more frequency bands over time. A therapy program may be selected or modified based on the sleep stage determination. Therapy may be delivered during the sleep stage according to the selected or modified therapy program. In some examples, therapy delivery may be controlled after making separate determinations of a sleep stage based on the biosignal and another physiological parameter, and confirming that the sleep stage determinations are consistent.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Jianping Wu, Gregory F. Molnar, Gabriela C. Molnar, Timothy J. Denison
  • Patent number: 9770204
    Abstract: Delivery of electrical stimulation to the substantia nigra and the subthalamic nucleus of a brain of a patient are independently controlled in order to treat sleep and movement disorders. Electrical stimulation of the subthalamic nucleus may be effective in treating symptoms associated with a movement disorder, and electrical stimulation of the substantia nigra may be effective in treating symptoms associated with a sleep disorder. During a sleep state of the patient, a sleep stage of the patient may be determined, and an electrical stimulation device may be controlled based on the determined sleep stage. Electrical stimulation of the substantia nigra and subthalamic nucleus may be delivered at substantially the same time or at different times.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: September 26, 2017
    Assignee: Medtronic, Inc.
    Inventors: Jianping Wu, Dwight E. Nelson, Xin Su, Gregory F. Molnar
  • Patent number: 9724511
    Abstract: Techniques for managing urinary or fecal incontinence include delivering a first type of therapy to generate a first physiological response and, upon detecting a trigger event, delivering a second type of therapy to generate a second physiological response. The first type of therapy can be delivered on a substantially regular basis, while the second type of therapy is delivered as needed to provide an additional boost of therapy. The trigger event for activating the delivery of the second type of therapy may include input from a sensor that indicates a bladder condition, patient activity level or patient posture, or patient input. In some examples, the therapy is stimulation therapy.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: August 8, 2017
    Assignee: Medtronic, Inc.
    Inventors: Xuan K. Wei, Eric H. Bonde, Keith A. Miesel, Mark S. Lent, Gregory F. Molnar
  • Patent number: 9706957
    Abstract: Therapy delivery to a patient may be controlled based on a determined sleep stage of the patient. In examples, the sleep stage may be determined based on a frequency characteristic of a biosignal indicative of brain activity of the patient. A frequency characteristic may include, for example, a power level within one or more frequency bands of the biosignal, a ratio of the power level in two or more frequency bands, or a pattern in the power level of one or more frequency bands over time. A therapy program may be selected or modified based on the sleep stage determination. Therapy may be delivered during the sleep stage according to the selected or modified therapy program. In some examples, therapy delivery may be controlled after making separate determinations of a sleep stage based on the biosignal and another physiological parameter, and confirming that the sleep stage determinations are consistent.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: July 18, 2017
    Assignee: Medtronic, Inc.
    Inventors: Jianping Wu, Gregory F. Molnar, Gabriela C. Molnar, Timothy J. Denison
  • Publication number: 20170156663
    Abstract: A medical device delivers a therapy to a patient. The medical device or another device may periodically determine an activity level or gait parameter of the patient, and associate each determined level or parameter with a current therapy parameter set. A value of at least one activity metric is determined for each of a plurality of therapy parameter sets based on the activity levels or parameters associated with that therapy parameter set. Whether the patient is currently experiencing or anticipated to experience gait freeze caused by their neurological disorder, such as Parkinson's disease, may also be determined. Gait freeze events may be associated with current therapy parameters and used to determine activity metric values. In some examples, the activity metric associated with certain therapy parameters may be presented to a user.
    Type: Application
    Filed: February 22, 2017
    Publication date: June 8, 2017
    Inventors: Kenneth T. Heruth, Keith A. Miesel, Gregory F. Molnar
  • Patent number: 9592379
    Abstract: A medical device delivers a therapy to a patient. The medical device or another device may periodically determine an activity level or gait parameter of the patient, and associate each determined level or parameter with a current therapy parameter set. A value of at least one activity metric is determined for each of a plurality of therapy parameter sets based on the activity levels or parameters associated with that therapy parameter set. Whether the patient is currently experiencing or anticipated to experience gait freeze caused by their neurological disorder, such as Parkinson's disease, may also be determined. Gait freeze events may be associated with current therapy parameters and used to determine activity metric values. In some examples, the activity metric associated with certain therapy parameters may be presented to a user.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: March 14, 2017
    Assignee: Medtronic, Inc.
    Inventors: Kenneth T. Heruth, Keith A. Miesel, Gregory F. Molnar
  • Publication number: 20160367803
    Abstract: Techniques for managing urinary or fecal incontinence include delivering a first type of therapy to generate a first physiological response and, upon detecting a trigger event, delivering a second type of therapy to generate a second physiological response. The first type of therapy can be delivered on a substantially regular basis, while the second type of therapy is delivered as needed to provide an additional boost of therapy. The trigger event for activating the delivery of the second type of therapy may include input from a sensor that indicates a bladder condition, patient activity level or patient posture, or patient input. In some examples, the therapy is stimulation therapy.
    Type: Application
    Filed: September 2, 2016
    Publication date: December 22, 2016
    Inventors: Xuan K. Wei, Eric H. Bonde, Keith A. Miesel, Mark S. Lent, Gregory F. Molnar
  • Patent number: 9433783
    Abstract: Techniques for managing urinary or fecal incontinence include delivering a first type of therapy to generate a first physiological response and, upon detecting a trigger event, delivering a second type of therapy to generate a second physiological response. The first type of therapy can be delivered on a substantially regular basis, while the second type of therapy is delivered as needed to provide an additional boost of therapy. The trigger event for activating the delivery of the second type of therapy may include input from a sensor that indicates a bladder condition, patient activity level or patient posture, or patient input. In some examples, the therapy is stimulation therapy.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 6, 2016
    Assignee: Medtronic, Inc.
    Inventors: Xuan K. Wei, Eric H. Bonde, Keith A. Miesel, Mark S. Lent, Gregory F. Molnar
  • Publication number: 20160158553
    Abstract: A patient controls the delivery of therapy through volitional inputs that are detected by a biosignal within the brain. The volitional patient input may be directed towards performing a specific physical or mental activity, such as moving a muscle or performing a mathematical calculation. In one embodiment, a biosignal detection module monitors an electroencephalogram (EEG) signal from within the brain of the patient and determines whether the EEG signal includes the biosignal. In one embodiment, the biosignal detection module analyzes one or more frequency components of the EEG signal. In this manner, the patient may adjust therapy delivery by providing a volitional input that is detected by brain signals, wherein the volitional input may not require the interaction with another device, thereby eliminating the need for an external programmer to adjust therapy delivery. Example therapies include electrical stimulation, drug delivery, and delivery of sensory cues.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 9, 2016
    Inventors: Eric J. Panken, Timothy J. Denison, Gregory F. Molnar
  • Patent number: 9289607
    Abstract: Systems (10), devices (16), and methods may be used for treating bladder dysfunction, such as urgency and pelvic pain. In one example, a method includes administering a pharmacological agent to a patient (14) in a dosage sufficient to desensitize a C-afferent nerve fiber of the patient. Additionally, the method includes delivering stimulation to activate a nerve fiber proximate to the C-afferent nerve fiber via an electrode (19A, 19B, 21A, 21B, 29A-29D) electrically coupled to an implantable medical device (16). In some examples, the nerve fiber may be different than the C-afferent nerve fiber, the stimulation of the nerve fiber may elicit an inhibitory physiological response related to voiding in the patient, and/or the stimulation substantially may not activate the C-afferent nerve fiber after desensitization of the nerve fiber via the administration of the pharmacological agent.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: March 22, 2016
    Assignee: MEDTRONIC, INC.
    Inventors: Xin Su, Gregory F. Molnar, Dwight E. Nelson
  • Publication number: 20160030741
    Abstract: Techniques for managing urinary or fecal incontinence include delivering a first type of therapy to generate a first physiological response and, upon detecting a trigger event, delivering a second type of therapy to generate a second physiological response. The first type of therapy can be delivered on a substantially regular basis, while the second type of therapy is delivered as needed to provide an additional boost of therapy. The trigger event for activating the delivery of the second type of therapy may include input from a sensor that indicates a bladder condition, patient activity level or patient posture, or patient input. In some examples, the therapy is stimulation therapy.
    Type: Application
    Filed: October 9, 2015
    Publication date: February 4, 2016
    Inventors: Xuan K. Wei, Eric H. Bonde, Keith A. Miesel, Mark S. Lent, Gregory F. Molnar
  • Patent number: 9248288
    Abstract: A patient controls the delivery of therapy through volitional inputs that are detected by a biosignal within the brain. The volitional patient input may be directed towards performing a specific physical or mental activity, such as moving a muscle or performing a mathematical calculation. In one embodiment, a biosignal detection module monitors an electroencephalogram (EEG) signal from within the brain of the patient and determines whether the EEG signal includes the biosignal. In one embodiment, the biosignal detection module analyzes one or more frequency components of the EEG signal. In this manner, the patient may adjust therapy delivery by providing a volitional input that is detected by brain signals, wherein the volitional input may not require the interaction with another device, thereby eliminating the need for an external programmer to adjust therapy delivery. Example therapies include electrical stimulation, drug delivery, and delivery of sensory cues.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: February 2, 2016
    Assignee: Medtronic, Inc.
    Inventors: Eric J. Panken, Timothy J. Denison, Gregory F. Molnar
  • Patent number: 9155885
    Abstract: Techniques for managing urinary or fecal incontinence include delivering a first type of therapy to generate a first physiological response and, upon detecting a trigger event, delivering a second type of therapy to generate a second physiological response. The first type of therapy can be delivered on a substantially regular basis, while the second type of therapy is delivered as needed to provide an additional boost of therapy. The trigger event for activating the delivery of the second type of therapy may include input from a sensor that indicates a bladder condition, patient activity level or patient posture, or patient input. In some examples, the therapy is stimulation therapy.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: October 13, 2015
    Assignee: Medtronic, Inc.
    Inventors: Xuan K. Wei, Eric H. Bonde, Keith A. Miesel, Mark S. Lent, Gregory F. Molnar
  • Publication number: 20150265207
    Abstract: Therapy delivery to a patient may be controlled based on a determined sleep stage of the patient. In examples, the sleep stage may be determined based on a frequency characteristic of a biosignal indicative of brain activity of the patient. A frequency characteristic may include, for example, a power level within one or more frequency bands of the biosignal, a ratio of the power level in two or more frequency bands, or a pattern in the power level of one or more frequency bands over time. A therapy program may be selected or modified based on the sleep stage determination. Therapy may be delivered during the sleep stage according to the selected or modified therapy program. In some examples, therapy delivery may be controlled after making separate determinations of a sleep stage based on the biosignal and another physiological parameter, and confirming that the sleep stage determinations are consistent.
    Type: Application
    Filed: June 8, 2015
    Publication date: September 24, 2015
    Inventors: Jianping Wu, Gregory F. Molnar, Gabriela C. Molnar, Timothy J. Denison
  • Patent number: 9072870
    Abstract: Therapy delivery to a patient may be controlled based on a determined sleep stage of the patient. In examples, the sleep stage may be determined based on a frequency characteristic of a biosignal indicative of brain activity of the patient. A frequency characteristic may include, for example, a power level within one or more frequency bands of the biosignal, a ratio of the power level in two or more frequency bands, or a pattern in the power level of one or more frequency bands over time. A therapy program may be selected or modified based on the sleep stage determination. Therapy may be delivered during the sleep stage according to the selected or modified therapy program. In some examples, therapy delivery may be controlled after making separate determinations of a sleep stage based on the biosignal and another physiological parameter, and confirming that the sleep stage determinations are consistent.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Jianping Wu, Gregory F. Molnar, Gabriela C. Miyazawa, Timothy J. Denison
  • Patent number: 8958875
    Abstract: Implantable medical devices switch from a constant current mode of operation to a constant voltage mode of operation. The switching may be based on the device determining that tissue impedance stability has occurred. The determination may be a measurement of output voltage stability of the constant current source or based on other factors such as an amount of time that has elapsed. The switching may be as the result of an externally generated request such as by a clinician via an external device. The implantable medical device may begin constant voltage mode by utilizing stimulation parameters based on those initially programmed for constant current mode and based upon a measurement of voltage amplitude being output by the constant current source prior to the switch.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: February 17, 2015
    Assignee: Medtronic, Inc.
    Inventors: Kevin J. Kelly, Matthew J. Michaels, Gregory F. Molnar, Jonathan C. Werder