Patents by Inventor Gregory J. Manlove

Gregory J. Manlove has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8786265
    Abstract: A switching regulator is configured to provide a regulated voltage to a load while maintaining a substantially maximum output current limit, the switching regulator having a loop gain. In accordance with one aspect the switching regulator comprises: a circuit for adjusting the maximum output current limit in response to a programmable signal independently of the loop gain. In accordance with another aspect, the switching regulator comprises: a resistance sensing element for providing the current output of the regulator, and having a resistance which varies with temperature; and a circuit for maintaining the output current limit at a level independent of the temperature of the sensing element. In addition, in accordance with one aspect, a method of providing a regulated voltage to a load is disclosed in which a substantially maximum output current limit of a switching regulator is maintained.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 22, 2014
    Assignee: Linear Technology Corporation
    Inventors: Gregory J. Manlove, Andrew J. Gardner, Yiding (Eric) Gu
  • Publication number: 20100320974
    Abstract: A switching regulator is configured to provide a regulated voltage to a load while maintaining a substantially maximum output current limit, the switching regulator having a loop gain. In accordance with one aspect the switching regulator comprises: a circuit for adjusting the maximum output current limit in response to a programmable signal independently of the loop gain. In accordance with another aspect, the switching regulator comprises: a resistance sensing element for providing the current output of the regulator, and having a resistance which varies with temperature; and a circuit for maintaining the output current limit at a level independent of the temperature of the sensing element. In addition, in accordance with one aspect, a method of providing a regulated voltage to a load is disclosed in which a substantially maximum output current limit of a switching regulator is maintained.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 23, 2010
    Applicant: LINEAR TECHNOLOGY CORP.
    Inventors: Gregory J. Manlove, Andrew J. Gardner, Yiding (Eric) Gu
  • Patent number: 7331212
    Abstract: A sensor module is provided having a compact housing containing a sensor. A low temperature co-fired ceramic substrate is located on the housing. The sensor and signal processing circuitry are located on the low temperature co-fired ceramic substrate. The sensor module further includes a metal shield substantially encapsulating the sensor.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: February 19, 2008
    Assignee: Delphi Technologies, Inc.
    Inventors: Gregory J. Manlove, Stephen P. Long, Hamid R. Borzabadi, Timothy A. Vas, Kevin J. Hawes
  • Publication number: 20070281626
    Abstract: A transceiver for transmitting and receiving satellite RF signals is provided. The transceiver includes RF front-end receiver circuitry capable of receiving FM radio broadcast RF signals and converting the FM radio broadcast RF signals to an intermediate frequency. The RF front-end receiver circuitry is configured to receive RF signals at greater than 108 MHz and convert the RF signals to an intermediate frequency. The transceiver also includes signal processing circuitry including at least one DSP core for demodulating intermediate frequency signals provided by the front-end circuitry and for modulating data to be transmitted into baseband modulated data signals, and at least one audio output. The transceiver further includes RF transmitter circuitry configured to convert the baseband modulated data signals provided by the at least one DSP core into modulated transmit signals having a frequency greater than 108 MHz for transmission and transmit the modulated transmit signals.
    Type: Application
    Filed: June 5, 2006
    Publication date: December 6, 2007
    Inventors: Paul J. Dobosz, John D. Funk, Jeffrey J. Marrah, Gregory J. Manlove
  • Patent number: 7119705
    Abstract: The capacitance of a shielded capacitive load cell is determined so as to minimize the effect of stray or parasitic capacitance between the load cell and other objects including the shield. The load cell conductors are coupled across input and output terminals of an operational amplifier that is tied to a reference voltage. A constant current is applied to the load cell, and the resulting rate of change in voltage at the amplifier output is measured as a representation of the load cell capacitance. In a vehicle seat sensor application including an electromagnetic interference shield between the load cell and the seating surface, the amplifier output is coupled to the load cell electrode furthest from the shield, the amplifier maintains the other load cell electrode at a virtual reference voltage, and the shield is tied to the reference voltage.
    Type: Grant
    Filed: October 30, 2004
    Date of Patent: October 10, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Gregory J. Manlove, Robert K Constable, Ashraf K. Kamel, Gregory A. Cobb, Duane D. Fortune, William W. Fultz, Dennis P. Griffin, Thomas L. Voreis
  • Patent number: 6993975
    Abstract: A pressure sensor module is provided with an isolation platform which isolates stress. The pressure sensor module includes a base structure and a cantilever member formed in the base structure by an isolation gap. A pressure sensing element is located on the cantilever member such that the cantilever member provides stress isolation to the pressure sensing element.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: February 7, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Hamid R. Borzabadi, Dennis M. Koglin, Gregory J. Manlove, Stephen P. Long
  • Patent number: 6937083
    Abstract: Analog signal conditioning circuitry is provided for processing an analog signal generated by a sensor to remove DC offset. The signal conditioning circuitry includes an amplifier having the first input receiving an analog input signal and a second input receiving a reference signal. The amplifier includes an output providing an analog output signal defined by an amplified representation of the analog input signal and the reference signal. The circuitry includes a feedback circuit having an input coupled to the amplifier output and an output coupled to the first input of the amplifier for providing an analog feedback signal. The feedback circuit includes an analog-to-digital converter for converting the analog amplifier output to a digital signal, a digital controller for processing the digital signal, and a digital to analog converter for converting the processed digital signal to an analog feedback signal.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: August 30, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Gregory J. Manlove, Mark R. Keyse
  • Patent number: 6831471
    Abstract: An oxygen sensor interface circuit is configurable on the fly by an electronic controller such as an engine controller to support oxygen sensors having unique interface requirements, to reliably identify various oxygen sensor faults, and to enable rapid detection of a warmed up sensor. The interface circuit is configurable in a first respect to enable operation with any of a number of different sensors, and in a second respect to enable more reliable fault detection, including measurement of leakage to ground or battery.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: December 14, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Kevin M. Gertiser, James A. Kinley, Ashraf K. Kamel, Gregory J. Manlove
  • Patent number: 6806756
    Abstract: Analog signal conditioning circuitry is provided for processing an analog signal generated by a sensor to remove DC offset. The signal conditioning circuitry includes an amplifier having the first input receiving an analog input signal and a second input receiving a reference signal. The amplifier includes an output providing an analog output signal defined by an amplified representation of the analog input signal and the reference signal. The circuitry includes a feedback circuit having an input coupled to the amplifier output and an output coupled to the first input of the amplifier for providing an analog feedback signal. The feedback circuit includes an analog-to-digital converter for converting the analog amplifier output to a digital signal, a digital controller for processing the digital signal, and a digital to analog converter for converting the processed digital signal to an analog feedback signal.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: October 19, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Gregory J. Manlove, Mark R. Keyse
  • Publication number: 20040095153
    Abstract: An oxygen sensor interface circuit is configurable on the fly by an electronic controller such as an engine controller to support oxygen sensors having unique interface requirements, to reliably identify various oxygen sensor faults, and to enable rapid detection of a warmed up sensor. The interface circuit is configurable in a first respect to enable operation with any of a number of different sensors, and in a second respect to enable more reliable fault detection, including measurement of leakage to ground or battery.
    Type: Application
    Filed: November 14, 2002
    Publication date: May 20, 2004
    Inventors: Kevin M. Gertiser, James A. Kinley, Ashraf K. Kamel, Gregory J. Manlove
  • Patent number: 6674279
    Abstract: A variable reluctance sensor interface module having a variable attenuation circuit and a rectifier and differential to single-ended conversion circuit for operating in a current mode to attenuate a differential input voltage. The variable attenuation circuit receives an input differential voltage from a magnetic sensor, converts the differential voltage to current, and variably attenuates the current. The rectifier and differential to single-ended conversion circuit converts the variably attenuated current to a voltage output. The input circuit includes an RC filter that attenuates high frequency signals. An initial threshold circuit generates an initial threshold voltage that compensates for internal resistance variations.
    Type: Grant
    Filed: May 9, 2002
    Date of Patent: January 6, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Gregory J. Manlove, Kevin M. Gertiser, James C. Bach, Gerald A Kilgour
  • Publication number: 20030210035
    Abstract: A variable reluctance sensor interface module having a variable attenuation circuit and a rectifier and differential to single-ended conversion circuit for operating in a current mode to attenuate a differential input voltage. The variable attenuation circuit receives an input differential voltage from a magnetic sensor, converts the differential voltage to current, and variably attenuates the current. The rectifier and differential to single-ended conversion circuit converts the variably attenuated current to a voltage output. The input circuit includes an RC filter that attenuates high frequency signals. An initial threshold circuit generates an initial threshold voltage that compensates for internal resistance variations.
    Type: Application
    Filed: May 9, 2002
    Publication date: November 13, 2003
    Inventors: Gregory J. Manlove, Kevin M. Gertiser, James C. Bach, Gerald A. Kilgour
  • Patent number: 6566849
    Abstract: A non-linear temperature compensation circuit (10) is provided for generating at least dual-slope characteristics responsive to changes in operating temperature of the compensation circuit. The compensation circuit includes a temperature dependent current generator circuit (11) for generating at least one output (I4) substantially proportional to changes in the temperature of the circuit, a current-based dual-slope drift generator (12) for generating a current proportional to absolute temperature, and a summing means (14) for summing both current outputs and generating a compensation drift voltage. The temperature dependent current generator includes a sub-circuit having a first current generator that generates a current (I2) that is relatively independent of temperature, and a second current generator that generates a second current (I3) that decreases with increases in temperature.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: May 20, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Abhijeet V. Chavan, Gregory J. Manlove
  • Patent number: 6559557
    Abstract: An error detection circuit for an airbag deployment control system includes a delay circuit receiving an analog acceleration signal, a difference circuit producing a difference signal based on a time difference between the original and delayed acceleration signals, and a first comparator circuit comparing the difference signal to first and second threshold signals. If the difference signal falls within an error region defined between the first and second threshold values, a decision circuit inhibits an otherwise pending airbag deployment event. If, on the other hand, the difference signal falls outside of the error region, the decision circuit allows airbag deployment with minimal delay.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: May 6, 2003
    Assignee: Delphi Technologies, Inc.
    Inventors: Gregory J. Manlove, Lee C. Boger
  • Patent number: 6486745
    Abstract: An adjustable voltage controlled oscillator has an input for receiving a voltage signal and an integrator coupled to the input for generating a ramp signal. The circuit also includes an adjustable current supply coupled to an output of the integrator for supplying an adjustable amount of current. A comparator compares the ramp signal with a predetermined voltage. The circuit further includes an output for generating a frequency output as a function of the comparison, wherein the circuit is calibratible by adjusting current generated by the adjustable current supply.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: November 26, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Gregory J. Manlove, Lawrence D. Hazelton, Mark B. Kearney
  • Publication number: 20020074859
    Abstract: An error detection circuit for an airbag deployment control system includes a delay circuit receiving an analog acceleration signal, a difference circuit producing a difference signal based on a time difference between the original and delayed acceleration signals, and a first comparator circuit comparing the difference signal to first and second threshold signals. If the difference signal falls within an error region defined between the first and second threshold values, a decision circuit inhibits an otherwise pending airbag deployment event. If, on the other hand, the difference signal falls outside of the error region, the decision circuit allows airbag deployment with minimal delay.
    Type: Application
    Filed: December 20, 2000
    Publication date: June 20, 2002
    Inventors: Gregory J. Manlove, Lee C. Boger
  • Patent number: 5498986
    Abstract: A sensor interface circuit is provided which realizes common mode rejection and achieves a desired transfer response while realizing a simplified amplifier arrangement. The interface circuit is particularly useful for amplifying and conditioning signals generated by an oxygen sensor on an automotive vehicle. The sensor interface circuit has first and second inputs for receiving input voltages from a sensor which are joined together to provide a differential voltage representative of the voltage potential between the first and second inputs. One input may receive a common mode ground employed by the sensor. An amplifier having a first input receives a differential voltage at an inverting input and a positive non-zero reference voltage at a non-inverting input. The amplifier has an output coupled to a grounded switch for providing an output signal referenced to reference ground.
    Type: Grant
    Filed: April 29, 1994
    Date of Patent: March 12, 1996
    Assignee: Delco Electronics Corporation
    Inventor: Gregory J. Manlove
  • Patent number: 5467034
    Abstract: A sensor interface circuit and method are provided which realizes common mode rejection, compensates for external input impedance and internal loads and achieves a desired transfer response. The interface circuit is particularly useful for amplifying and conditioning signals generated by an oxygen sensor on an automotive vehicle. The sensor interface circuit has first and second inputs for receiving input voltages from a sensor which are joined together to provide a differential voltage representative of the voltage potential between the first and second inputs. RF filtering circuitry is coupled to both inputs. An amplifier having a gain and a first input receives a differential voltage and has an output coupled to a grounded switch for providing an output signal referenced to reference ground. A supply voltage is applied across the inputs and a current is supplied to one of the inputs.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: November 14, 1995
    Assignee: Delco Electronics Corporation
    Inventors: Gregory J. Manlove, Donald A. Hitko
  • Patent number: 5369319
    Abstract: A MOS hysteresis comparator having a source transistor bias circuit which generates a source current Is that compensates for temperature and manufacturing process variations, thereby providing a hysteresis characteristic which is substantially insensitive to such temperature and manufacturing process variations. The source transistor bias circuit includes a set of MOS transistors which replicate the comparator load currents which occur at the switch points of the comparator, and a source transistor which mirrors the sum of the replicated currents to form the source current Is of the comparator.
    Type: Grant
    Filed: December 21, 1992
    Date of Patent: November 29, 1994
    Assignee: Delco Electronics Corporation
    Inventors: Brian K. Good, Gregory J. Manlove, Edward H. Honnigford
  • Patent number: 5365200
    Abstract: An integrated circuit apparatus comprises a first stage amplifier and a second stage amplifier. The first stage amplifier is characterized by a cross-coupled integrated layout providing a rail-to-rail swing and a linear gain, A, substantially defined as A=g.sub.m r.sub.o '. The second stage amplifier is coupled to the output of the first stage amplifier and comprises a high-voltage integrated circuit transistor with an AC feedback circuit, the AC feedback circuit comprising, in series, a capacitor, a N+ resistor and an N-WELL resistor, wherein the output of the second stage amplifier is used to directly drive an inductive load.
    Type: Grant
    Filed: October 8, 1992
    Date of Patent: November 15, 1994
    Assignee: Delco Electronics Corporation
    Inventors: Edward H. Honnigford, Gregory J. Manlove