Patents by Inventor Gregory Mordukhovich

Gregory Mordukhovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120290167
    Abstract: A method to control a clutch in a transmission includes monitoring a frequency response of the clutch including monitoring a response repeating one time per revolution of the clutch a response repeating more than one time per revolution of the clutch. A ratio of the response repeating more than one time per revolution of the clutch to the response repeating one time per revolution of the clutch is determined and compared to a first threshold ratio. A likely shudder condition is indicated based upon the comparing.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gregory Mordukhovich, Michael B. Viola
  • Publication number: 20120145113
    Abstract: Methods for removal of condensed, blow-by contaminants with small molecular dimensions from the circulating lubricating engine oil of internal combustion engines, including automotive engines, with a positive crankcase ventilation system are disclosed. An adsorbent macroporous structure comprising alumino-silicate particles with micro-pores is at least partially immersed in the circulating oil. The micro-pores are sized to adsorb the small, condensed, blow-by, contaminant molecules but not the larger oil molecules. At low temperatures the contaminant molecules may be adsorbed and temporarily stored in the micropores. At higher temperatures some of the contaminants may desorb and be re-incorporated in the oil. The desorbed contaminants will circulate with the higher temperature oil into the engine crankcase where they may vaporize and be removed by the engine positive crankcase ventilation system.
    Type: Application
    Filed: February 22, 2012
    Publication date: June 14, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Gregory Mordukhovich
  • Patent number: 8196559
    Abstract: A device for removing a fluidic contaminant from lubricating oil in an internal combustion engine includes a fluid absorbing element comprising a mounting element and a fluid absorption media assembled into a sump of a crankcase of the internal combustion engine. The fluid absorbing element is immersed within the oil contained in the sump when the engine is not operating. The fluid absorption media is configured to absorb a fluidic contaminant in the engine oil when the engine is not operating and to desorb the absorbed fluidic contaminant.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: June 12, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Gregory Mordukhovich, James L. Linden, Andrew M. Mance
  • Publication number: 20120118100
    Abstract: One embodiment may include a gear assembly comprising at least one pair of meshing gears situated inside a gear case having a sump portion and a wall portion. A gear oil mixture may be disposed at least in the sump portion. At least one gear is immersed partially or fully in the oil mixture. The oil mixture comprises a hydrocarbon oil base and a coolant having an endothermic liquid/vapor transition at a temperature between the lower and upper operating temperatures of the gear assembly.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, James L. Linden, Andrew M. Mance
  • Publication number: 20120103286
    Abstract: Devices and methods for removal of condensed, blow-by contaminants with small molecular dimensions from the circulating lubricating engine oil of internal combustion engines, including automotive engines, with a positive crankcase ventilation system are disclosed. These condensable blow-by contaminants include water, alcohols and hydrocarbons with preponderantly seven or fewer carbon atoms. A macroporous structure comprising alumino-silicate particles with micro-pores is at least partially immersed in the circulating oil. The micro-pores are sized to adsorb the small, condensed, blow-by, contaminant molecules but not the larger oil molecules. The particles may be multi-layered, with an inner layer adapted for adsorption of polar molecules. Adsorption is most extensive at lower oil temperatures and decreases as the oil temperature increases. Thus at low temperatures the contaminant molecules may be adsorbed, removed from the oil and temporarily stored in the micropores.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Gregory Mordukhovich
  • Patent number: 8161953
    Abstract: Devices and methods for removal of condensed, blow-by contaminants with small molecular dimensions from the circulating lubricating engine oil of internal combustion engines, including automotive engines, with a positive crankcase ventilation system are disclosed. These condensable blow-by contaminants include water, alcohols and hydrocarbons with preponderantly seven or fewer carbon atoms. A macroporous structure comprising alumino-silicate particles with micro-pores is at least partially immersed in the circulating oil. The micro-pores are sized to adsorb the small, condensed, blow-by, contaminant molecules but not the larger oil molecules. The particles may be multi-layered, with an inner layer adapted for adsorption of polar molecules. Adsorption is most extensive at lower oil temperatures and decreases as the oil temperature increases. Thus at low temperatures the contaminant molecules may be adsorbed, removed from the oil and temporarily stored in the micropores.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: April 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Gregory Mordukhovich
  • Patent number: 8157071
    Abstract: The clutch of the present invention has a reaction plate, a friction plate, a friction layer, and at least one non-compressible member. The friction plate is disposed adjacent the reaction plate for frictionally engaging the reaction plate to transfer a driving torque between the reaction plate and the friction plate when the compression force is applied. The friction layer has at least one groove. The at least one non-compressible member is disposed in the at least one groove for preventing further compression of the friction layer by the reaction plate. The at least one non-compressible member is adhered to the friction plate or press fit within the friction layer.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: April 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Gregory Mordukhovich
  • Patent number: 8101286
    Abstract: A multi-layer coating for a smooth contact surface of a clutch plate and a method for manufacturing the same have been developed. This coating can help reduce the prevalence of clutch shudder, noise, and plate wear that is often encountered in a friction-disc clutch mechanism found in a motor vehicle's powertrain. The multi-layer coating may comprise a relatively soft base layer and one or more relatively hard particle layers overlying the base layer. This combination of layers can help provide stable friction characteristics and thermal properties between clutch plate surfaces. One or more optional bonding layers may also be provided between any two adjacent layers to improve the adherent bonding therebetween. At least some of the layers of the multi-layer coating may be applied by a HVO/AF thermal spray procedure.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: January 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Simon Chin-Yu Tung, Gregory Mordukhovich
  • Publication number: 20110287986
    Abstract: A method for controlling a coefficient of friction involves applying a magnetic force, an electro-magnetic force, and/or an electrostatic force to nanoparticles disposed on a surface. The method further involves controlling a rolling-to-sliding ratio of the nanoparticles on the surface by i) adjusting a value of the force applied to the nanoparticles, and/or ii) adjusting an orientation of the nanoparticles by adjusting a direction of the force applied to the nanoparticles.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 24, 2011
    Applicants: The Regents of the University of California, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, Jacob N. Israelachvili
  • Publication number: 20110287987
    Abstract: A tribo-system includes a metal substrate having a surfactant layer chemisorbed to a side thereof, a lubricant established on the metal substrate, and a plurality of nanoparticles dispersed in the lubricant. Each of the nanoparticles includes i) an inorganic core having a predetermined size and shape, and ii) a surfactant shell chemisorbed to a surface of the inorganic core, where the surfactant shell has a predetermined thickness. The adhesive force and energy between the metal substrate surface and the nanoparticles is higher than the adhesive force and energy between individual particles of the nanoparticles.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 24, 2011
    Applicants: The Regents of the University of California, GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, Jacob N. Israelachvili
  • Patent number: 7946833
    Abstract: The present invention provides a vane pump having variable displacement and high efficiency. The variable displacement vane pump includes a plurality of elongate, axially extending inserts disposed in the rotor. One of the inserts is disposed between every adjacent vane pair. The inserts are received within axially extending pockets in the rotor and are coupled to the rotor by springs. At lower rotational speeds, the inserts are retracted and the displacement of the pump chambers is at maximum. At higher rotational speeds, the inserts are advanced into the pump chambers, effectively reducing their displacement. Thus, the variable displacement pump compensates for the varying drive speed and achieves improved uniformity of fluid flow by providing maximum displacement at low speeds and reduced displacement at higher speeds.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: May 24, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Gregory Mordukhovich
  • Patent number: 7931134
    Abstract: The disclosed clutch includes a reaction plate, a friction plate, a friction layer, at least one non-compressible member and a fluid lubricant. The friction layer has a coefficient of friction that is sufficient to prevent relative rotation of the reaction and friction plates when the friction layer is compressed by the reaction plate. Further, the friction layer has at least one groove. At least one non-compressible member is disposed in the at least one groove to prevent further compression of the friction layer by the reaction plate. The at least one non-compressible member is mechanically fastened to the friction plate.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: April 26, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Gregory Mordukhovich
  • Publication number: 20110083651
    Abstract: A device for removing a fluidic contaminant from engine oil in an internal combustion engine includes a fluid absorbing element having a mounting element and a fluid absorption media assembled into a sump of a crankcase of the internal combustion engine. A first portion of the fluid absorption media is immersed within the engine oil contained in the sump when the engine is not operating and a second portion of the fluid absorption media is exposed to ambient air contained in a head space of the crankcase. The fluid absorption media is configured to absorb a fluidic contaminant in the engine oil during a period when the engine is not operating and to desorb the absorbed fluidic contaminant.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 14, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, James L. Linden, Andrew M. Mance
  • Publication number: 20110083650
    Abstract: A device for removing a fluidic contaminant from lubricating oil in an internal combustion engine includes a fluid absorbing element comprising a mounting element and a fluid absorption media assembled into a sump of a crankcase of the internal combustion engine. The fluid absorbing element is immersed within the oil contained in the sump when the engine is not operating. The fluid absorption media is configured to absorb a fluidic contaminant in the engine oil when the engine is not operating and to desorb the absorbed fluidic contaminant.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 14, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, James L. Linden, Andrew M. Mance
  • Publication number: 20110084010
    Abstract: A serviceable device for filtering lubricating oil includes an inlet and an outlet, a first filtering element and an absorption filtering element. The absorption filtering element is configured to absorb a fluidic contaminant present in the lubricating oil when in contact with the absorption filtering element. A flow path for the lubricating oil is from the inlet, through the first filtering element, and out the outlet. The flow path further includes lubricating oil contact with the absorption filtering element.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 14, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, James L. Linden, Andrew M. Mance
  • Publication number: 20110073546
    Abstract: Contaminating water and/or fuel material may be removed from a stream of internal combustion engine lubricating oil being circulated over parts of an operating engine. A suitable membrane material is supported in a suitable housing. At least a portion of the oil stream is flowed over one side of the membrane and water and/or fuel material diffuses through the membrane to its other side where they are gathered and removed from the housing. The water and fuel material may be recovered separately using different membranes or different regions of a membrane. They may be swept from the membranes and housings using streams of flowing air heated to a pre-selected temperatures using waste engine heat for disposition outside the housing. Application of this practice to other membrane-separable mixtures is described.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, Andrew M. Mance
  • Publication number: 20110062082
    Abstract: Water and fuel contaminating material may be removed from a stream operating engine. A suitable membrane material is supported in a suitable housing. At least a portion of the contaminated oil stream is flowed over one side of the membrane and water and fuel material diffuses through the membrane to its other side where they are gathered and removed from the housing. The water and fuel material may be recovered separately using different membranes or different regions of a membrane. They may be swept from the membrane and housing a flow of air for disposition outside the housing.
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gregory Mordukhovich, Andrew M. Mance
  • Patent number: 7886885
    Abstract: The clutch of the present invention has a reaction plate, a friction plate, a friction layer, at least one non-compressible member, and a fluid lubricant. The friction plate is disposed adjacent the reaction plate for frictionally engaging the reaction plate to transfer a driving torque between the reaction plate and the friction plate when the compression force is applied. The friction layer has at least one groove. The at least one non-compressible member is disposed in the at least one groove for preventing further compression of the friction layer by the reaction plate. The at least one non-compressible member is adhered to the friction plate and a fluid lubricant is disposed between the reaction plate and the friction plate for providing a lubrication layer between the plates.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: February 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Gregory Mordukhovich
  • Patent number: 7832070
    Abstract: An apparatus and method for increasing the operating life of a rotating gear element including a plurality of outwardly-projecting gear teeth each having an involute profile, with each gear tooth having a pair of flanks and a pair of generally semi-circular root portions. A ring tool having a plurality of hardened, inwardly-projecting burnishing teeth is employed to plastically deform only the root portions of the gear element being formed, while avoiding contact with the flanks as the gear element is passed through the ring tool. The ring tool also includes a plurality of broaching surfaces or cutting edges for removing excess stock material from the surfaces of the root portions. The ring tool increases the compressive residual stresses in the root portion of the gear element being formed, thereby creating an optimal residual stress profile and greater bending strength within the root portion of the gear element.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: November 16, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Gregory Mordukhovich
  • Patent number: 7766144
    Abstract: A clutch plate assembly is provided having a friction interface and internal fluid passages for delivering pressurized fluid to the friction interface to cool the interface, and to reduce spin losses through the clutch assembly. The fluid passages comprise a plurality of primary passages extending inward from a clutch plate inner or outer diameter, and a plurality of secondary fluid passages intersecting the primary fluid passages for conducting fluid to the friction interface. Fluid is directed to the friction interface during clutch engagement for cooling thereof when the clutch assembly is engaging, and separates the clutch plates to reduce spin losses when the clutch assembly is disengaged. A method is also provided for controlling fluid flow at the friction interface, including providing fluid directly to the interface for cooling when the clutch plate assembly is engaging, and for reducing spin losses when the clutch plate assembly is substantially disengaged.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: August 3, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Gregory Mordukhovich, Paul D. Stevenson