Patents by Inventor Gregory Paul Winter

Gregory Paul Winter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6806079
    Abstract: A member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbp members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof, by virtue of the sbp member or a polypeptide component thereof being expressed as a fusion with a capsid component of the rgdp. The displayed sbps may be selected by affinity with a complementary sbp member, and the DNA recovered from selected rgdps for expression of the selected sbp members. Antibody sbp members may be thus obtained, with the different chains thereof expressed, one fused to the capsid component and the other in free form for association with the fusion partner polypeptide. A phagemid may be used as an expression vector, with said capsid fusion helping to package the phagemid DNA.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: October 19, 2004
    Assignees: Medical Research Council, Cambridge Antibody Technology Limited
    Inventors: John McCafferty, Anthony Richard Pope, Kevin Stuart Johnson, Henricus Renerus Jacobus Mattheus Hoogenboom, Andrew David Griffiths, Ronald Henry Jackson, Kaspar Philipp Holliger, James David Marks, Timothy Piers Clackson, David John Chiswell, Gregory Paul Winter, Timothy Peter Bonnert
  • Publication number: 20040192897
    Abstract: An altered antibody is produced by replacing the complementarity determining regions (CDRs) of a variable region of an immunoglobulin (Ig) with the CDRs from an Ig of different specificity, using recombinant DNA techniques. The gene coding sequence for producing the altered antibody may be produced by site-directed mutagenesis using long oligonucleotides or using gene synthesis.
    Type: Application
    Filed: January 24, 2003
    Publication date: September 30, 2004
    Applicant: Medical Research Council
    Inventor: Gregory Paul Winter
  • Publication number: 20040157215
    Abstract: A member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbp members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof, by virtue of the sbp member or a polypeptide component thereof being expressed as a fusion with a capsid component of the rgdp. The displayed sbps may be selected by affinity with a complementary sbp member, and the DNA recovered from selected rgdps for expression of the selected sbp members. Antibody sbp members may be thus obtained, with the different chains thereof expressed, one fused to the capsid component and the other in free form for association with the fusion partner polypeptide. A phagemid may be used as an expression vector, with said capsid fusion helping to package the phagemid DNA.
    Type: Application
    Filed: March 18, 2004
    Publication date: August 12, 2004
    Applicants: Cambridge Antibody Technology Limited, Medical Research Council
    Inventors: John McCafferty, Anthony Richard Pope, Kevin Stuart Johnson, Henricus Renerus Jacobus Mattheus Hoogenboom, Andrew David Griffiths, Ronald Henry Jackson, Kaspar Philipp Holliger, James David Marks, Timothy Piers Clackson, David John Chiswell, Gregory Paul Winter, Timothy Peter Bonnert
  • Publication number: 20040157214
    Abstract: A member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbp members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof, by virtue of the sbp member or a polypeptide component thereof being expressed as a fusion with a capsid component of the rgdp. The displayed sbps may be selected by affinity with a complementary sbp member, and the DNA recovered from selected rgdps for expression of the selected sbp members. Antibody sbp members may be thus obtained, with the different chains thereof expressed, one fused to the capsid component and the other in free form for association with the fusion partner polypeptide. A phagemid may be used as an expression vector, with said capsid fusion helping to package the phagemid DNA.
    Type: Application
    Filed: March 18, 2004
    Publication date: August 12, 2004
    Applicants: Cambridge Antibody Technology Limited, Medical Research Council
    Inventors: John McCafferty, Anthony Richard Pope, Kevin Stuart Johnson, Henricus Renerus Jacobus Mattheus Hoogenboom, Andrew David Griffiths, Ronald Henry Jackson, Kaspar Philipp Holliger, James David Marks, Timothy Piers Clackson, David John Chiswell, Gregory Paul Winter, Timothy Peter Bonnert
  • Publication number: 20040127688
    Abstract: An altered antibody is produced by replacing the complementarity determining regions (CDRs) of a variable region of an immunoglobulin (Ig) with the CDRs from an Ig of different specificity, using recombinant DNA techniques. The gene coding sequence for producing the altered antibody may be produced by site-directed mutagenesis using long oligonucleotides or using gene synthesis.
    Type: Application
    Filed: January 24, 2003
    Publication date: July 1, 2004
    Applicants: Medical Research Council, BTG International Limited
    Inventor: Gregory Paul Winter
  • Publication number: 20040110941
    Abstract: The present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, preferably using the polymerase chain reaction, methods for the use of said DNA sequences in the productions of Ig-type molecules and said ligands or receptors, and the use of said ligand or receptors in therapy, diagnosis or catalysis.
    Type: Application
    Filed: November 8, 2002
    Publication date: June 10, 2004
    Applicant: Medical Research Council
    Inventors: Gregory Paul WINTER, Elizabeth Sally WARD, Detlef GUSSOW
  • Publication number: 20040058400
    Abstract: Polypeptides comprising a first domain, which comprises a binding region of an immunoglobulin heavy chain variable region, and a second domain, which comprises a binding region of an immunoglobulin light chain variable region, the domains being linked but incapable of associating with each other to form an antigen binding site, associate to form antigen binding multimers, such as dimers, which may be multivalent or have multispecificity. The domains may be linked by a short peptide linker or may be joined directly together. Bispecific dimers may have longer linkers. Methods of preparation of the polypeptides and multimers and diverse repertoires thereof, and their display on the surface of bacteriophage for easy selection of binders of interest, are disclosed, along with many utilities.
    Type: Application
    Filed: September 20, 2002
    Publication date: March 25, 2004
    Applicant: Medical Research Council
    Inventors: Kaspar-Philipp Holliger, Andrew David Griffiths, Hendricus Renerus Jacobus Matheus Hoogenboom, Magnus Malmqvist, James David Marks, Brian Timothy McGuinness, Anthony Richard Pope, Terence Derek Prospero, Gregory Paul Winter
  • Publication number: 20040009507
    Abstract: An in vitro method for constructing a concatenated head-to-tail repertoire of target nucleic acid sequences is revealed. In particular, the method relates to cycles of concatenation whereby after a single cycle of concatenation, not more than two identical copies of each target nucleic acid sequence are linked together head-to-tail on the same molecule of DNA. The present method ensures that each molecule of a concatenated repertoire is derived from a single template target sequence of the starting repertoire.
    Type: Application
    Filed: April 11, 2003
    Publication date: January 15, 2004
    Applicant: Domantis, Ltd.
    Inventors: Gregory Paul Winter, Laurent Jespers, Ignace Lasters, Peter Wang
  • Publication number: 20030190674
    Abstract: Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from the said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from a rearranged V-gene sequences of unimmunised mammal.
    Type: Application
    Filed: December 19, 2002
    Publication date: October 9, 2003
    Applicant: Medical Research Council
    Inventors: Andrew David Griffiths, Hendricus Renerus Jacobus Mattheus Hoogenboom, James David Marks, John McCafferty, Gregory Paul Winter, Geoffrey Walter Grigg
  • Patent number: 6593081
    Abstract: Methods are disclosed for the production of human self-antibodies and antibody fragments, which bind human antigens. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface a member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Human antibodies or antibody fragments are selected by binding with human antigens. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding to and is a human antigen. Nucleic acid libraries used may be derived from V-gene sequences of unimmunised humans. Part or all of the nucleic acid may be derived from oligonucleotide synthesis.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: July 15, 2003
    Assignees: Medical Research Council, Cambridge Antibody Technology Limited
    Inventors: Andrew David Griffiths, Hendricus Renerus Jacobus Mattheus Hoogenboom, James David Marks, John McCafferty, Gregory Paul Winter, Geoffrey Walter Grigg
  • Publication number: 20030130496
    Abstract: The present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, preferably using the polymerase chain reaction, methods for the use of said DNA sequences in the production of Ig-type molecules and said ligands or receptors, and the use of said ligands or receptors in therapy, diagnosis or catalysis.
    Type: Application
    Filed: November 8, 2002
    Publication date: July 10, 2003
    Applicant: Medical Research Council
    Inventors: Gregory Paul Winter, Elizabeth Sally Ward, Detlef Gussow
  • Patent number: 6589527
    Abstract: Antibodies are retargeted to a target for which they have no functional specificity under normal circumstances. Use is made of a multi-specific binding substance which has binding specificity for the target and anti-antibody binding specificity. The binding substance may comprise an immunoglobulin antigen binding site and may be a “diabody”. Depending on the antibody bound, effector functions such as Complement, ADCC and immune blocking are recruited to act on the target. Example targets are human cells. In vivo and in vitro utilities are exemplified, including lysis of tumor cells and agglutination of red blood cells.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: July 8, 2003
    Assignee: Medical Reseach Council
    Inventors: Gregory Paul Winter, Kaspar Philipp Holliger
  • Patent number: 6582915
    Abstract: Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface a member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from the said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from a rearranged V-gene sequences of unimmunised mammal.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: June 24, 2003
    Assignees: Medical Research Council, Cambridge Antibody Technology Limited
    Inventors: Andrew David Griffiths, Hendricus Renerus Jacobus Mattheus Hoogenboom, James David Marks, John McCafferty, Gregory Paul Winter, Geoffrey Walter Grigg
  • Publication number: 20030114659
    Abstract: The present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, preferably using the polymerase chain reaction, methods for the use of said DNA sequences in the production of Ig-type molecules and said ligands or receptors, and the use of said ligands or receptors in therapy, diagnosis or catalysis.
    Type: Application
    Filed: November 8, 2002
    Publication date: June 19, 2003
    Applicant: Medical Research Council
    Inventors: Gregory Paul Winter, Elizabeth Sally Ward, Detlef Gussow
  • Patent number: 6555313
    Abstract: Methods are disclosed for the production of human self-antibodies and antibody fragments, which bind human antigens. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface a member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Human antibodies or antibody fragments are selected by binding with human antigens. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding to and is a human antigen. Nucleic acid libraries used may be derived from V-gene sequences of unimmunised humans. Part or all of the nucleic acid may be derived from oligonucleotide synthesis.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: April 29, 2003
    Assignees: Medical Research Council, Cambridge Antibody Technology Limited
    Inventors: Andrew David Griffiths, Hendricus Renerus Jacobus Mattheus Hoogenboom, James David Marks, John McCafferty, Gregory Paul Winter, Geoffrey Walter Grigg
  • Publication number: 20030078192
    Abstract: The invention relates to a pharmaceutical composition comprising a chimeric, folded protein domain comprising two or more sequence segments from parent amino acid sequences that are not homologous. The invention more particularly relates to compositions comprising a chimeric, folded protein domain comprising two or more sequence segments wherein each of the sequence segments: is not designed or selected to consist solely of a single complete protein structural element and is not designed or selected to consist solely of an entire protein domain; and, in isolation, shows no significant folding at the melting temperature of the chimeric protein. The invention also relates to methods for the selection of such protein domains, and to methods of raising an immune response using such domains, and preferably to chimeric domains that display conformational B cell epitopes of at least one of their parent amino acid sequences.
    Type: Application
    Filed: April 10, 2002
    Publication date: April 24, 2003
    Inventors: Gregory Paul Winter, Lutz Riechmann
  • Patent number: 6548640
    Abstract: The invention relates to altered antibodies that have a heavy or light chain variable domain in which the framework regions differ from the framework regions naturally associated with the complementarity determining regions of the variable domain and in which the framework regions are derived from a source of framework regions that differs from the framework regions naturally associated with the complementarity determining regions of the variable regions.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: April 15, 2003
    Assignee: BTG International Limited
    Inventor: Gregory Paul Winter
  • Patent number: 6545142
    Abstract: The present invention relates to single domain ligands derived from molecules in the immunoglobulin (Ig) superfamily, receptors comprising at least one such ligand, methods for cloning, amplifying and expressing DNA sequences encoding such ligands, preferably using the polymerase chain reaction, methods for the use of said DNA sequences in the production of Ig-type molecules and said ligands or receptors, and the use of said ligands or receptors in therapy, diagnosis or catalysis.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: April 8, 2003
    Assignee: Medical Research Council of the United Kingdom
    Inventors: Gregory Paul Winter, Elizabeth Sally Ward, Detlef Güssow
  • Patent number: 6544731
    Abstract: Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface a member of a specific binding pair which is an antibody or antibody fragment, and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from the said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from a rearranged V-gene sequences of unimmunised mammal.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: April 8, 2003
    Assignees: Medical Research Council, Cambridge Antibody Technology Limited
    Inventors: Andrew David Griffiths, Hendricus Renerus Jacobus Mattheus Hoogenboom, James David Marks, John McCafferty, Gregory Paul Winter, Geoffrey Walter Grigg
  • Patent number: 6521404
    Abstract: Methods are disclosed for the production of anti-self antibodies and antibody fragments, being antibodies or fragments of a particular species of mammal which bind self antigens of that species. Methods comprise providing a library of replicable genetic display packages (rgdps), such as filamentous phage, each rgdp displaying at its surface a member of a specific binding pair which is an antibody or antibody fragment and each rgdp containing nucleic acid sequence derived from a species of mammal. The nucleic acid sequence in each rgdp encodes a polypeptide chain which is a component part of the sbp member displayed at the surface of that rgdp. Anti-self antibody fragments are selected by binding with a self antigen from the said species of mammal. The displayed antibody fragments may be scFv, Fd, Fab or any other fragment which has the capability of binding antigen. Nucleic acid libraries used may be derived from a rearranged V-gene sequences of unimmunised mammal.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: February 18, 2003
    Assignees: Medical Research Council, Cambridge Antibody Technology Limited
    Inventors: Andrew David Griffiths, Hendricus Renerus Jacobus Mattheus Hoogenboom, James David Marks, John McCafferty, Gregory Paul Winter, Geoffrey Walter Grigg