Patents by Inventor Grigorios Kolios

Grigorios Kolios has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904290
    Abstract: An apparatus contains at least one pressure-rated apparatus shell and at least one modular framework system containing ceramic fiber composite materials and arranged within the apparatus shell. A modular lining apparatus includes the modular framework system and refractory bricks. The apparatus can be used for high-temperature reactors, especially electrically heated high-temperature reactors.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: February 20, 2024
    Assignee: BASF SE
    Inventors: Grigorios Kolios, Bernd Zoels, Hagen Appel, Jens Bernnat, Friedrich Glenk, Dieter Flick, Gerhard Olbert, Frederik Scheiff, Christopher Alec Anderlohr
  • Patent number: 11882629
    Abstract: The present invention relates to an electrically heatable packed pressure-bearing apparatus for conducting endothermic reactions having an upper (3), middle (1) and lower (3) apparatus section, where at least one pair of electrodes (4, 5) in a vertical arrangement is installed in the middle section (1) and all electrodes are disposed in an electrically conductive solid-state packing (26), the upper and lower apparatus sections have a specific conductivity of 105 S/m to 108 S/m, and the middle apparatus section is electrically insulated against the solid-state packing, wherein the upper and lower apparatus sections are electrically insulated from the middle apparatus section, the upper electrode is connected via the upper apparatus section and the lower electrodes via the lower apparatus section or the electrodes are each connected via one or more connecting elements (10, 16) that are in electrical contact with these sections and the ratio of the cross-sectional areas of the upper and lower electrode to the cr
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: January 23, 2024
    Assignee: BASF SE
    Inventors: Hagen Appel, Jens Bernnat, Friedrich Glenk, Grigorios Kolios, Gerhard Olbert, Frederik Scheiff, Bernd Zoels, Matthias Kern, Dieter Flick, Christopher Alec Anderlohr, Dirk Klingler, Achim Wechsung
  • Patent number: 11691115
    Abstract: The present invention relates to a process for conducting endothermic gas phase or gas-solid reactions, wherein the endothermic reaction is conducted in a production phase in a first reactor zone, the production zone, which is at least partly filled with solid particles, where the solid particles are in the form of a fixed bed, of a moving bed and in sections/or in the form of a fluidized bed, and the product-containing gas stream is drawn off from the production zone in the region of the highest temperature level plus/minus 200 K and the product-containing gas stream is guided through a second reactor zone, the heat recycling zone, which at least partly comprises a fixed bed, where the heat from the product-containing gas stream is stored in the fixed bed, and, in the subsequent purge step, a purge gas is guided through the production zone and the heat recycling zone in the same flow direction, and, in a heating zone disposed between the production zone and the heat recycling zone, the heat required for the
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: July 4, 2023
    Assignee: BASF SE
    Inventors: Grigorios Kolios, Bernd Zoels, Matthias Kern, Jens Bernnat, Rene Koenig, Friedrich Glenk, Achim Wechsung
  • Publication number: 20230010059
    Abstract: A process can be used for performing a pyrolysis of hydrocarbons in a rotary drum reactor at a temperature in the range of from 600 to 1800° C. The heat for the endothermic pyrolysis is provided by resistive heating of at least one particulate electrically conductive material introduced into said rotary drum reactor and moved through the rotary drum reactor with a flow of a hydrocarbon. The rotary drum reactor contains (A) an inner wall made of electrically insulated material, (B) a pressure-bearing outer wall, and (C) an electrical heating system attached to the inner wall and/or at least one integrated electrically conducting electrode pair. The at least one electrode pair is located at both ends of the inner wall of the rotary drum.
    Type: Application
    Filed: November 30, 2020
    Publication date: January 12, 2023
    Applicant: BASF SE
    Inventors: Frederik SCHEIFF, Dieter Flick, Lothar Seidemann, Jens Bernnat, Grigorios Kolios
  • Publication number: 20220387954
    Abstract: A method can be used for operating a descending moving bed reactor with flowable granular material. The method involves: (i) filling an upper lock-hopper with granular material and/or emptying a lower lock-hopper, (ii) purging the lock-hoppers with purging gas, and (iii) filling the reaction chamber containing a descending moving bed from the upper lock-hopper and/or emptying the reaction chamber into the lower lock-hopper. The pressure equalization between the reaction chamber and lock-hopper is achieved with product gas. The method then involves: (iv) optionally, relieving the lock-hoppers and conveying the product gas flow into the product line, and (v) purging the lock-hoppers with purging gas.
    Type: Application
    Filed: October 20, 2020
    Publication date: December 8, 2022
    Applicants: BASF SE, thyssenkrupp AG, thyssenkrupp Industrial Solutions AG
    Inventors: Grigorios Kolios, Frederik Scheiff, Christopher Alec Anderlohr, Hagen Appel, Gerhard Olbert, Bernd Zoels, Dieter Flick, Achim Wechsung, Matthias Kern, Karsten Bueker, Nicolai Antweiler
  • Publication number: 20220352721
    Abstract: A method of continuously performing one or more heat-consuming processes, where at least one heat-consuming process is electrically heated. The maximum temperature in the reaction zone of the heat-consuming process is higher than 500° C., at least 70% of products of the heat-consuming process are continuously processed further downstream and/or fed to a local energy carrier network, and the electrical energy required for the heat-consuming process is drawn from an external power grid and from at least one local power source. The local power source is fed by at least one local energy carrier network and by products from the heat-consuming process. The local energy carrier network stores natural gas, naphtha, hydrogen, synthesis gas, and/or steam as energy carrier, and has a total capacity of at least 5 GWh. The local energy carrier network is fed with at least one further product and/or by-product from at least one further chemical process.
    Type: Application
    Filed: May 28, 2020
    Publication date: November 3, 2022
    Applicants: BASF SE, thyssenkrupp AG, thyssenkrupp Industrial Solutions AG
    Inventors: Frederik SCHEIFF, Grigorios Kolios, Andreas Bode
  • Publication number: 20220228280
    Abstract: An integrated process contains the following steps of: (i) pyrolysis of hydrocarbons to carbon and hydrogen, (iia) removal of at least a part of the produced carbon in step (i) and at least partly further processing of said carbon into a carbon containing electrode, and (iib) removal of the hydrogen produced in step (i) and at least partly using said hydrogen for providing energy, preferably electric energy or heat, for the electrode production in step (iia). A joint plant is also useful, which contains (a) at least one reactor for a pyrolysis process, (b) at least one reactor for the production of electrodes for an aluminum process, (c) a power plant and/or at least one gas-fired burner, and optionally, (d) at least one reactor for the electrolysis for producing aluminum.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 21, 2022
    Applicants: BASF SE, thyssenkrupp AG, thyssenkrupp Industrial Solutions AG
    Inventors: Frederik Scheiff, Marc Leduc, Grigorios Kolios, William Daloz, Karsten Bueker, Nicolai Antweiler, Andreas Bode
  • Publication number: 20220152584
    Abstract: Described herein is a gaslight multilayered composite tube having a heat transfer coefficient of >500 W/m2/K which in its construction over the cross section of the wall of the composite tube includes as an inner layer a nonporous monolithic oxide ceramic surrounded by an outer layer of oxidic fiber composite ceramic, where this outer layer has an open porosity of 5%<?<50%, and which on the inner surface of the composite tube includes a plurality of depressions oriented towards the outer wall of the composite tube. Also described herein is a method of using the multilayered composite tube as a reaction tube for endothermic reactions, jet tubes, flame tubes or rotary tubes.
    Type: Application
    Filed: March 6, 2020
    Publication date: May 19, 2022
    Inventors: Grigorios Kolios, Heinrich Laib, Frederik Scheiff, Bernd Zoels, Matthias Kern
  • Publication number: 20220152568
    Abstract: A reactor for carrying out an endothermic reaction, in particular a high-temperature reaction, in which a product gas is obtained from a feed gas, wherein: the reactor surrounds a reactor interior; the reactor is configured to provide a reactor bed in a reaction zone of the reactor interior, which reactor bed comprises a large number of solid material particles; the reactor is also configured to guide the feed gas into the reaction zone; in order to heat the feed gas, the reactor is designed to heat the solid material particles in the reaction zone such that, by transferring heat from the solid material particles to the feed gas, the feed gas in the reaction zone can be heated to a reaction temperature in order to participate as a starting product in the endothermic reaction for producing the product gas.
    Type: Application
    Filed: March 31, 2020
    Publication date: May 19, 2022
    Inventors: Hans-Jörg ZANDER, Markus WEIKL, Andreas BODE, Dirk KLINGLER, Matthias KERN, Grigorios KOLIOS, Achim WECHSUNG, Frederik SCHEIFF, Dieter FLICK, Nicolai ANTWEILER, Karsten BÜKER
  • Patent number: 11078077
    Abstract: A method for producing synthesis gas may involve introducing a hydrocarbon-containing coke-oven gas and a carbon dioxide-containing converter gas into a first reaction zone where hydrogen present in the hydrocarbon-containing coke-oven gas reacts at least partly with carbon dioxide to form water, which reacts thermally with hydrocarbon to form synthesis gas containing carbon monoxide and hydrogen. The method may further involve introducing an oxygen-containing gas in a second reaction zone, and using the oxygen-containing gas and some hydrogen from the first reaction zone to produce thermal energy. Still further, the method may involve supplying the thermal energy produced in the second reaction zone to the first reaction zone.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: August 3, 2021
    Assignees: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, THYSSENKRUPP AG
    Inventors: Hans-Jürgen Maass, Volker Göke, Otto Machhammer, Andreas Bode, Grigorios Kolios, Karsten Büker
  • Publication number: 20210162359
    Abstract: An apparatus contains at least one pressure-rated apparatus shell and at least one modular framework system containing ceramic fiber composite materials and arranged within the apparatus shell. A modular lining apparatus includes the modular framework system and. refractory bricks. The apparatus can be used for high-temperature reactors, especially electrically heated high-temperature reactors.
    Type: Application
    Filed: August 5, 2019
    Publication date: June 3, 2021
    Applicant: BASF SE
    Inventors: Grigorios Kolios, Bernd Zoels, Hagen Appel, Jens Bernnat, Friedrich Glenk, Dieter Flick, Gerhard Olbert, Frederik Scheiff, Christopher Alec Anderlohr
  • Publication number: 20210051770
    Abstract: The present invention relates to an electrically heatable packed pressure-bearing apparatus for conducting endothermic reactions having an upper (3), middle (1) and lower (3) apparatus section, where at least one pair of electrodes (4, 5) in a vertical arrangement is installed in the middle section (1) and all electrodes are disposed in an electrically conductive solid-state packing (26), the upper and lower apparatus sections have a specific conductivity of 105 S/m to 108 S/m, and the middle apparatus section is electrically insulated against the solid-state packing, wherein the upper and lower apparatus sections are electrically insulated from the middle apparatus section, the upper electrode is connected via the upper apparatus section and the lower electrodes via the lower apparatus section or the electrodes are each connected via one or more connecting elements (10, 16) that are in electrical contact with these sections and the ratio of the cross-sectional areas of the upper and lower electrode to the cr
    Type: Application
    Filed: January 22, 2019
    Publication date: February 18, 2021
    Applicant: BASF SE
    Inventors: Hagen APPEL, Jens BERNNAT, Friedrich GLENK, Grigorios KOLIOS, Gergard OLBERT, Frederik SCHEIFF, Berd ZOELS, Matthias Kern, Dieter FLICKde, Christopher Alec ANDERLOHR, Dirk KLINGLER, Achim WECSUNG
  • Patent number: 10865151
    Abstract: The present invention relates to a gastight multilayer composite tube having a heat transfer coefficient of >500 W/m2/K and comprising at least two layers, namely a layer of nonporous monolithic oxide ceramic and a layer of oxidic fiber composite ceramic, a connecting piece comprising at least one metallic gas-conducting conduit which in the longitudinal direction of the composite tube overlaps in a region at least two ceramic layers, where the one ceramic layer comprises a nonporous monolithic ceramic and the other ceramic layer comprises a fiber composite ceramic, and also the use of the multilayer composite tube as reaction tube for endothermic reactions, radiation tubes, flame tubes or rotary tubes.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: December 15, 2020
    Assignee: BASF SE
    Inventors: Grigorios Kolios, Sven Thate, Carlos Tellaeche Herranz, Bernd Zoels
  • Publication number: 20200147600
    Abstract: A process for preparing a composite material comprising an electride compound and an additive, said process comprising (i) providing a composition comprising the additive and a precursor compound of the electride compound, wherein the precursor compound comprises an oxidic compound of the garnet group, and wherein the additive has a boiling temperature which is higher than the melting temperature of the precursor compound; (ii) heating the composition provided in (i) under plasma forming conditions in a gas atmosphere to a temperature above the Hüttig temperature of the precursor compound and below the boiling temperature of the additive, obtaining the composite material.
    Type: Application
    Filed: April 11, 2018
    Publication date: May 14, 2020
    Inventors: Stephan A. SCHUNK, Sebastian SCHAEFER, Jaroslaw Michael MORMUL, Andrei-Nicolae PARVULESCU, Grigorios KOLIOS, Torsten MATTKE, Frank ROSOWSKI
  • Publication number: 20200071177
    Abstract: A process for preparing an electride compound, comprising (i) providing a precursor compound comprising an oxidic compound of the garnet group; (ii) heating the precursor provided in (i) under plasma forming conditions in a gas atmosphere to a temperature of the precursor above the Hüttig temperature of the precursor, obtaining the electride compound.
    Type: Application
    Filed: April 11, 2018
    Publication date: March 5, 2020
    Inventors: Stephan A. SCHUNK, Sebastian SCHAEFER, Jaroslaw Michael MORMUL, Andrei-Nicolae PARVULESCU, Grigorios KOLIOS, Torsten MATTKE, Frank ROSOWSKI
  • Publication number: 20200061565
    Abstract: The present invention relates to a process for conducting endothermic gas phase or gas-solid reactions, wherein the endothermic reaction is conducted in a production phase in a first reactor zone, the production zone, which is at least partly filled with solid particles, where the solid particles are in the form of a fixed bed, of a moving bed and in sections/or in the form of a fluidized bed, and the product-containing gas stream is drawn off from the production zone in the region of the highest temperature level plus/minus 200 K and the product-containing gas stream is guided through a second reactor zone, the heat recycling zone, which at least partly comprises a fixed bed, where the heat from the product-containing gas stream is stored in the fixed bed, and, in the subsequent purge step, a purge gas is guided through the production zone and the heat recycling zone in the same flow direction, and, in a heating zone disposed between the production zone and the heat recycling zone, the heat required for the
    Type: Application
    Filed: October 26, 2017
    Publication date: February 27, 2020
    Applicant: BASF SE
    Inventors: Grigorios KOLIOS, Bernd ZOELS, Matthias KERN, Jens BERNNAT, Rene KOENIG, Friedrich GLENK, Achim WECHSUNG
  • Publication number: 20190358601
    Abstract: An apparatus (10) and the use thereof for preheating at least one fluid are proposed. The apparatus (10) has a solid heating body (12). Channels (16) for passage of the fluid are formed in the heating body (12). The heating body (12) is heatable. The heating body (12) is designed to heat the fluid to a target temperature within a target time, wherein the target temperature is at least a temperature at which a predetermined chemical reaction of the fluid takes place with a predetermined conversion within a predetermined time. The target time is shorter than the predetermined time. The heating body (12), for preheating of the fluid, is heated to the target temperature and the fluid is passed through the channels (16) within the target time.
    Type: Application
    Filed: September 12, 2017
    Publication date: November 28, 2019
    Inventors: Matthias KERN, Grigorios KOLIOS, Sabine SCHMIDT, Heinrich LAIB, Frederik SCHEIFF, Bernd ZOELS
  • Patent number: 10351422
    Abstract: The invention relates to a method of carrying out heat-consuming processes, wherein the total energy required averaged over a year for the heat-consuming process originates from at least two different energy sources, where one of the energy sources is an electric energy source whose power varies in the range from 0 to 100% of the total power required, and three different energy modes can individually provide the total power required for the heat-consuming process: (i) exclusively electric energy, (ii) a mixture of electric energy and at least one further nonelectric energy source or (iii) exclusively nonelectric energy, where the changeover time in which the change from one energy mode to another energy mode is completed is not more than 30 minutes.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: July 16, 2019
    Assignees: BASF SE, Linde AG
    Inventors: Otto Machhammer, Wolfgang Alois Hormuth, Christian Schneider, Andreas Bode, Volker Goeke, Hans-Juergen Maass, Matthias Kern, Dirk Klingler, Rene Koenig, Philipp Brueggemann, Jens Bernnat, Grigorios Kolios
  • Patent number: 10233078
    Abstract: The invention relates to a process for utilizing a hydrocarbon-comprising and/or carbon dioxide-comprising coproduct gas, accompanying gas and/or biogas, wherein hydrocarbon-comprising and/or carbon dioxide-comprising coproduct gas, accompanying gas and/or biogas is introduced into a reaction space and the multicomponent mixture comprised in the coproduct gas, accompanying gas and/or biogas is converted in a high-temperature zone at temperatures of more than 1000° C. and in the presence of a carrier into a product gas mixture which comprises more than 95% by volume of CO, CO2, H2, H2O, CH4 and N2 and optionally into a carbon-comprising solid which is deposited to an extent of at least 75% by weight, based on the total mass of the carbon-comprising solid, on the carrier where the flow velocity of the gas mixture of coproduct gas, accompanying gas and/or biogas in the reaction zone is less than 20 m/s.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: March 19, 2019
    Assignees: BASF SE, Linde AG, ThyssenKrupp Industrial Solutions AG
    Inventors: Christian Schneider, Andreas Bode, Dirk Klingler, Otto Machhammer, Philipp Brueggemann, Matthias Kern, Wolfgang Alois Hormuth, Marcus Guzmann, Rene Koenig, Jens Bernnat, Grigorios Kolios, Volker Goeke, Hans-Juergen Maass, Karsten Bueker
  • Patent number: 10099923
    Abstract: The invention relates to a process for producing synthesis gas (5) in which hydrocarbon (2) is decomposed thermally in a first reaction zone (11) to hydrogen and carbon, and hydrogen formed is passed from the first reaction zone (Z1) into a second action zone (Z2) in order to be reacted therein with carbon dioxide (4) to give water and carbon monoxide. The characteristic feature here is that energy required for the thermal decomposition of the hydrocarbon is supplied to the first reaction zone (Z1) from the second reaction zone (Z2).
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: October 16, 2018
    Assignee: BASF SE
    Inventors: Otto Machhammer, Grigorios Kolios, Andreas Bode, Hans-Juergen Maass