Patents by Inventor Guangbi Yuan

Guangbi Yuan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180240664
    Abstract: Provided are methods and apparatuses for depositing a graded or multi-layered silicon carbide film using remote plasma. A graded or multi-layered silicon carbide film can be formed under process conditions that provide one or more organosilicon precursors onto a substrate in a reaction chamber. Radicals of source gas in a substantially low energy state, such as radicals of hydrogen in the ground state, are provided from a remote plasma source into reaction chamber. In addition, co-reactant gas is flowed towards the reaction chamber. In some implementations, radicals of the co-reactant gas are provided from the remote plasma source into the reaction chamber. A flow rate of the co-reactant gas can be changed over time, incrementally or gradually, to form a multi-layered silicon carbide film or a graded silicon carbide film having a composition gradient from a first surface to a second surface of the graded silicon carbide film.
    Type: Application
    Filed: September 30, 2016
    Publication date: August 23, 2018
    Inventors: Bhadri N. Varadarajan, Bo Gong, Guangbi Yuan, Zhe Gui, Fengyuan Lai
  • Publication number: 20180096842
    Abstract: Provided are methods and apparatuses for depositing a graded or multi-layered silicon carbide film using remote plasma. A graded or multi-layered silicon carbide film can be formed under process conditions that provide one or more organosilicon precursors onto a substrate in a reaction chamber. Radicals of source gas in a substantially low energy state, such as radicals of hydrogen in the ground state, are provided from a remote plasma source into reaction chamber. In addition, co-reactant gas is flowed towards the reaction chamber. In some implementations, radicals of the co-reactant gas are provided from the remote plasma source into the reaction chamber. A flow rate of the co-reactant gas can be changed over time, incrementally or gradually, to form a multi-layered silicon carbide film or a graded silicon carbide film having a composition gradient from a first surface to a second surface of the graded silicon carbide film.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Bhadri N. Varadarajan, Bo Gong, Guangbi Yuan, Zhe Gui, Fengyuan Lai
  • Patent number: 9837270
    Abstract: Provided are methods and apparatuses for densifying a silicon carbide film using remote plasma treatment. Operations of remote plasma deposition and remote plasma treatment of the silicon carbide film alternatingly occur to control film density. A first thickness of silicon carbide film is deposited followed by a remote plasma treatment, and then a second thickness of silicon carbide film is deposited followed by another remote plasma treatment. The remote plasma treatment can flow radicals of source gas in a substantially low energy state, such as radicals of hydrogen in a ground state, towards silicon carbide film deposited on a substrate. The radicals of source gas in the substantially low energy state promote cross-linking and film densification in the silicon carbide film.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: December 5, 2017
    Assignee: Lam Research Corporation
    Inventors: Bhadri N. Varadarajan, Bo Gong, Guangbi Yuan, Zhe Gui, Fengyuan Lai