Patents by Inventor Guleid Hussen

Guleid Hussen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230278123
    Abstract: A method for the joining of ceramic pieces includes applying a layer of titanium on a first ceramic piece and applying a layer of titanium on a second ceramic piece; applying a layer of nickel on each of the layers of titanium on the first ceramic piece and the second ceramic piece; applying a layer of nickel phosphorous to each of the layers of nickel on the first ceramic piece and the second ceramic piece; assembling the first ceramic piece and the second ceramic piece with the layers of titanium, nickel, and nickel phosphorous therebetween; pressing the layer of nickel phosphorous of the first ceramic piece against the layer of nickel phosphorous of the second ceramic piece; heating the first ceramic piece and the second ceramic piece to a joining temperature in a vacuum; and cooling the first ceramic piece and the second ceramic piece. A hermetic seal is formed between the first ceramic piece and the second ceramic piece.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 7, 2023
    Applicant: WATLOW ELECTRIC MANUFACTURING COMPANY
    Inventors: Brent Elliot, Guleid Hussen, Jason Stephens, Michael Parker, Alfred Grant Elliot
  • Patent number: 11648620
    Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a layer of joining material between the two pieces. The ceramic pieces may be aluminum nitride or other ceramics, and the pieces may be brazed with Nickel and an alloying element, under controlled atmosphere. The completed joint will be fully or substantially Nickel with another element in solution. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the interior of a heater or electrostatic chuck. Semiconductor processing equipment comprising ceramic and joined with a nickel alloy and adapted to withstand processing chemistries, such as fluorine chemistries, as well as high temperatures.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: May 16, 2023
    Assignee: WATLOW ELECTRIC MANUFACTURING COMPANY
    Inventors: Brent Elliot, Guleid Hussen, Jason Stephens, Michael Parker, Alfred Grant Elliot
  • Publication number: 20220148904
    Abstract: A method for joining quartz pieces using metallic aluminum as the joining element. The aluminum may be placed between two quartz pieces and the assembly may be heated in the range of 500 C to 650 C. The joining atmosphere may be non-oxygenated. A method for the joining of quartz pieces which may include barrier layers on the quartz pieces. The barrier layers may be impervious to aluminum diffusion and may be of a metal oxide or metal nitride. The quartz pieces with the barrier layers may then be joined at temperatures higher than 650 C and less than 1200 C. A device such as an RF antenna or electrode in support of semiconductor processing using joined quartz pieces wherein the aluminum joining layer which has joined the pieces and also functions as antenna electrode.
    Type: Application
    Filed: November 22, 2021
    Publication date: May 12, 2022
    Applicant: WATLOW ELECTRIC MANUFACTURING COMPANY
    Inventors: Brent ELLIOT, Guleid HUSSEN, Jason STEPHENS, Michael PARKER
  • Patent number: 11222804
    Abstract: An electrostatic chuck with a top surface adapted for Johnsen-Rahbek clamping in the temperature range of 500 C to 750 C. The top surface may be sapphire. The top surface is attached to the lower portion of the electrostatic chuck using a braze layer able to withstand corrosive processing chemistries. A method of manufacturing an electrostatic chuck with a top surface adapted for Johnsen-Rahbek clamping in the temperature range of 500 C to 750 C.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: January 11, 2022
    Assignee: WATLOW ELECTRIC MANUFACTURING COMPANY
    Inventors: Brent Donald Alfred Elliot, Frank Balma, Michael Parker, Jason Stephens, Guleid Hussen
  • Patent number: 11183412
    Abstract: A method for joining quartz pieces using metallic aluminum as the joining element. The aluminum may be placed between two quartz pieces and the assembly may be heated in the range of 500 C to 650 C. The joining atmosphere may be non-oxygenated. A method for the joining of quartz pieces which may include barrier layers on the quartz pieces. The barrier layers may be impervious to aluminum diffusion and may be of a metal oxide or metal nitride. The quartz pieces with the barrier layers may then be joined at temperatures higher than 650 C and less than 1200 C. A device such as an RF antenna or electrode in support of semiconductor processing using joined quartz pieces wherein the aluminum joining layer which has joined the pieces and also functions as antenna electrode.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: November 23, 2021
    Assignee: WATLOW ELECTRIC MANUFACTURING COMPANY
    Inventors: Brent Elliot, Guleid Hussen, Jason Stephens, Michael Parker
  • Publication number: 20210292246
    Abstract: An electrical termination unit or feedthrough which may be used for routing electrical conductors through a chamber wall, or otherwise across a barrier between isolated atmospheric conditions. The electrical termination unit may have aluminum as the interface material to the chamber interface and may utilize a ceramic insulator. The electrical termination unit may have the aluminum used as the interface brazed directly to a ceramic surface of the insulator. The aluminum that forms the chamber interface may be formed within a hollow ceramic tube in the same process step that brazes the aluminum to the ceramic tube with a hermetic joint. Machining subsequent to the brazing of the aluminum to the ceramic insulator may allow for achievement of the final form desired. A method for manufacturing such an electrical termination unit.
    Type: Application
    Filed: June 8, 2021
    Publication date: September 23, 2021
    Applicant: Watlow Electric Manufacturing Company
    Inventors: Brent ELLIOT, Dennis George REX, Guleid HUSSEN, Michael PARKER, Jason STEPHENS
  • Patent number: 11028021
    Abstract: An electrical termination unit or feedthrough which may be used for routing electrical conductors through a chamber wall, or otherwise across a barrier between isolated atmospheric conditions. The electrical termination unit may have aluminum as the interface material to the chamber interface and may utilize a ceramic insulator. The electrical termination unit may have the aluminum used as the interface brazed directly to a ceramic surface of the insulator. The aluminum that forms the chamber interface may be formed within a hollow ceramic tube in the same process step that brazes the aluminum to the ceramic tube with a hermetic joint. Machining subsequent to the brazing of the aluminum to the ceramic insulator may allow for achievement of the final form desired. A method for manufacturing such an electrical termination unit.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: June 8, 2021
    Assignee: Watlow Electric Manufacturing Company
    Inventors: Brent Elliot, Dennis George Rex, Guleid Hussen, Michael Parker, Jason Stephens
  • Publication number: 20200357676
    Abstract: An electrostatic chuck with a top surface adapted for Johnsen-Rahbek clamping in the temperature range of 500 C to 750 C. The top surface may be sapphire. The top surface is attached to the lower portion of the electrostatic chuck using a braze layer able to withstand corrosive processing chemistries.
    Type: Application
    Filed: March 13, 2020
    Publication date: November 12, 2020
    Inventors: Brent Donald Alfred Elliot, Frank Balma, Michael Parker, Jason Stephens, Guleid Hussen
  • Patent number: 10593584
    Abstract: An electrostatic chuck with a top surface adapted for Johnsen-Rahbek clamping in the temperature range of 500 C. to 750 C. The top surface may be sapphire. The top surface is attached to the lower portion of the electrostatic chuck using a braze layer able to withstand corrosive processing chemistries. A method of manufacturing an electrostatic chuck with a top surface adapted for Johnsen-Rahbek clamping in the temperature range of 500 C. to 750 C.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: March 17, 2020
    Assignee: Component Re-Engineering Company, Inc.
    Inventors: Brent Donald Alfred Elliot, Frank Balma, Michael Parker, Jason Stephens, Guleid Hussen
  • Publication number: 20190291199
    Abstract: A method for the joining of ceramic pieces with a hermetically sealed joint comprising brazing a layer of joining material between the two pieces. The ceramic pieces may be aluminum nitride or other ceramics, and the pieces may be brazed with Nickel and an alloying element, under controlled atmosphere. The completed joint will be fully or substantially Nickel with another element in solution. The joint material is adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the interior of a heater or electrostatic chuck. Semiconductor processing equipment comprising ceramic and joined with a nickel alloy and adapted to withstand processing chemistries, such as fluorine chemistries, as well as high temperatures.
    Type: Application
    Filed: November 28, 2018
    Publication date: September 26, 2019
    Inventors: Brent Elliot, Guleid Hussen, Jason Stephens, Michael Parker, Alfred Grant Elliot
  • Publication number: 20190194078
    Abstract: An electrical termination unit or feedthrough which may be used for routing electrical conductors through a chamber wall, or otherwise across a barrier between isolated atmospheric conditions. The electrical termination unit may have aluminum as the interface material to the chamber interface and may utilize a ceramic insulator. The electrical termination unit may have the aluminum used as the interface brazed directly to a ceramic surface of the insulator. The aluminum that forms the chamber interface may be formed within a hollow ceramic tube in the same process step that brazes the aluminum to the ceramic tube with a hermetic joint. Machining subsequent to the brazing of the aluminum to the ceramic insulator may allow for achievement of the final form desired. A method for manufacturing such an electrical termination unit.
    Type: Application
    Filed: October 24, 2018
    Publication date: June 27, 2019
    Inventors: Brent Elliot, Dennis George Rex, Guleid Hussen, Michael Parker, Jason Stephens
  • Publication number: 20190109033
    Abstract: A method for joining quartz pieces using metallic aluminum as the joining element. The aluminum may be placed between two quartz pieces and the assembly may be heated in the range of 500 C to 650 C. The joining atmosphere may be non-oxygenated. A method for the joining of quartz pieces which may include barrier layers on the quartz pieces. The barrier layers may be impervious to aluminum diffusion and may be of a metal oxide or metal nitride. The quartz pieces with the barrier layers may then be joined at temperatures higher than 650 C and less than 1200 C. A device such as an RF antenna or electrode in support of semiconductor processing using joined quartz pieces wherein the aluminum joining layer which has joined the pieces and also functions as antenna electrode.
    Type: Application
    Filed: August 14, 2018
    Publication date: April 11, 2019
    Inventors: Brent Elliot, Guleid Hussen, Jason Stephens, Michael Parker
  • Publication number: 20170263486
    Abstract: An electrostatic chuck with a top surface adapted for Johnsen-Rahbek clamping in the temperature range of 500 C to 750 C. The top surface may be sapphire. The top surface is attached to the lower portion of the electrostatic chuck using a braze layer able to withstand corrosive processing chemistries. A method of manufacturing an electrostatic chuck with a top surface adapted for Johnsen-Rahbek clamping in the temperature range of 500 C to 750 C.
    Type: Application
    Filed: November 2, 2016
    Publication date: September 14, 2017
    Inventors: Brent Donald Alfred Elliot, Frank Balma, Michael Parker, Jason Stephens, Guleid Hussen
  • Publication number: 20130295710
    Abstract: Methods of manufacturing photovoltaic modules are provided. One method includes providing a substrate and depositing a lower electrode above the substrate. The method also includes depositing a lower stack of microcrystalline silicon layers above the lower electrode, depositing an upper stack of amorphous silicon layers above the lower stack of microcrystalline silicon layers, and depositing an upper electrode above the upper stack of amorphous silicon layers. At least one of the lower stack and the upper stack includes an N-I-P stack of silicon layers having an n-doped silicon layer, an intrinsic silicon layer, and a p-doped silicon layer. The intrinsic silicon layer has an energy band gap that is reduced by depositing the intrinsic silicon layer at a temperature of at least 250 degrees Celsius.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 7, 2013
    Inventors: Kevin Coakley, Brad Stimson, Sam Rosenthal, Jason Stephens, Guleid Hussen, Kunal Gurotra
  • Publication number: 20130014800
    Abstract: A photovoltaic device includes first and second photovoltaic cells, with each of the first and second photovoltaic cells having a substrate, a lower electrode disposed above the substrate along a deposition axis and that includes a conductive light transmissive layer, one or more semiconductor layers disposed above the substrate along the deposition axis, and an upper electrode disposed above the one or more semiconductor layers along the deposition axis. The semiconductor layers convert incident light into an electric current. The first and second photovoltaic cells are separated by first and second separation gaps. The first separation gap extend along the deposition axis through the lower electrode from the substrate and the second separation gap extends from a deposition surface of the light transmissive layer of the lower electrode and through a remainder of the lower electrode and the one or more semiconductor layers along the deposition axis.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: ThinSilicon Corporation
    Inventors: Jason Stephens, Kunal Girotra, Guleid Hussen
  • Publication number: 20110189811
    Abstract: A photovoltaic device includes a supporting layer, a semiconductor layer stack, and a conductive and light transmissive layer. The supporting layer is proximate to a bottom surface of the device. The semiconductor layer stack includes first and second semiconductor sub-layers, with the second sub-layer having a crystalline fraction of at least approximately 85%. A conductive and light transmissive layer between the supporting layer and the semiconductor layer stack, where an Ohmic contact exists between the first semiconductor sub-layer and the conductive and light transmissive layer.
    Type: Application
    Filed: April 8, 2011
    Publication date: August 4, 2011
    Applicant: THINSILICON CORPORATION
    Inventors: Jason M. Stephens, Kevin Michael Coakley, Guleid Hussen
  • Publication number: 20110114156
    Abstract: A photovoltaic device includes: a substrate; lower and upper electrode layers disposed above the substrate; and a semiconductor layer disposed between the lower and upper electrode layers, the semiconductor layer absorbing incident light to excite electrons from the semiconductor layer, wherein the semiconductor layer includes a built-in bypass diode extending between and coupled with the lower and upper electrode layers, the bypass diode permitting electric current to flow through the bypass diode when a reverse bias is applied across the lower and upper electrode layers.
    Type: Application
    Filed: December 8, 2010
    Publication date: May 19, 2011
    Applicant: THINSILICON CORPORATION
    Inventors: Kevin Coakley, Guleid Hussen, Jason Stephens
  • Publication number: 20100313952
    Abstract: A monolithically-integrated photovoltaic module is provided. The module includes an electrically insulating substrate, a lower stack of microcrystalline silicon layers above the substrate, a middle stack of amorphous silicon layers above the lower stack, an upper stack of amorphous silicon layers above the middle stack, and a light transmissive cover layer above the upper stack. An energy band gap of each of the lower, middle and upper stacks differs from one another such that a different spectrum of incident light is absorbed by each of the lower, middle and upper stacks.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal
  • Publication number: 20100313942
    Abstract: A method of manufacturing a photovoltaic module is provided. The method includes providing an electrically insulating substrate and a lower electrode, depositing a lower stack of silicon layers above the lower electrode, and depositing an upper stack of silicon layers above the lower stack. The lower and upper stacks include N-I-P junctions. The lower stack has an energy band gap of at least 1.60 eV while the upper stack has an energy band gap of at least 1.80 eV. The method also includes providing an upper electrode above the upper stack. The lower and upper stacks convert incident light into an electric potential between the upper and lower electrodes with the lower and upper stacks converting different portions of the light into the electric potential based on wavelengths of the light.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal
  • Publication number: 20100313935
    Abstract: A monolithically-integrated photovoltaic module is provided. The module includes an insulating substrate and a lower electrode above the substrate. The method also includes a lower stack of microcrystalline silicon layers above the lower electrode, an upper stack of amorphous silicon layers above the lower stack, and an upper electrode above the upper stack. The upper and lower stacks of silicon layers have different energy band gaps. The module also includes a built-in bypass diode vertically extending in the upper and lower stacks of silicon layers from the lower electrode to the upper electrode. The built-in bypass diode includes portions of the lower and upper stacks that have a greater crystalline portion than a remainder of the lower and upper stacks.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal