Patents by Inventor Guolin Xu

Guolin Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9707563
    Abstract: According to various embodiments, a reagent fluid dispensing device may be provided. The reagent fluid dispensing device may include a chamber for receiving a reagent fluid, the chamber having a first opening and a second opening; a first fluid conduit connected to the first opening of the chamber; a reservoir connected to the first fluid conduit, the reservoir having a first opening, wherein the first opening of the reservoir is connected to the first fluid conduit to form a passive valve, wherein the reservoir is dimensionalized for storing a predetermined volume of the reagent fluid; and a pneumatic conduit connected to the second opening of the chamber, wherein selective application of pneumatic pressure to the chamber through the pneumatic conduit transfers the reagent fluid from the reservoir to the chamber through the first fluid conduit. According to various embodiments, a microfluidic device including the reagent fluid dispensing device, and a method of dispensing a reagent fluid may be provided.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: July 18, 2017
    Assignee: Agency for Science, Technology and Research
    Inventors: Mo-Huang Li, Jackie Y. Ying, Guolin Xu, Yoke San Daniel Lee, Emril Mohamed Ali, Tseng-Ming Hsieh
  • Publication number: 20170029871
    Abstract: There is provided a microfluidic device comprising: a plurality of wells, each well comprising one opening to function as an inlet and an outlet for the well, wherein each opening is in fluid communication with a common fluidic channel, and wherein each opening is connected to the common fluidic channel via an isolation channel, and wherein the plurality of wells is arranged on the device in a radially symmetrical pattern. There is also provided a system and method comprising the device.
    Type: Application
    Filed: March 30, 2015
    Publication date: February 2, 2017
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Jackie Y. YING, Guolin XU, Rensheng DENG
  • Publication number: 20150209193
    Abstract: Various embodiments provide an apparatus for a diaper. The apparatus has two electrodes and an electronic device. The electronic device is coupled to the two electrodes. The two electrodes are operable to generate a potential difference when they are electrically connected together by ionized liquid. The electronic device is operable to generate an alarm signal when the potential difference is generated. Various other embodiments relate to a corresponding system, diaper and method of manufacturing an electrode.
    Type: Application
    Filed: August 26, 2013
    Publication date: July 30, 2015
    Inventors: Jackie Y. Ying, Guolin Xu, Rensheng Deng, Xiaojun Chen
  • Patent number: 8920760
    Abstract: The present invention provides compositions comprising a metal amidoborane and an amine, and processes for preparing the metal amidoborane compositions. In particular, the process comprises contacting ammonia borane with a metal amide in the presence of an amine solvent to form the metal amidoborane composition. The invention also provides methods for generating hydrogen, wherein the method comprises heating the metal amidoborane composition such that hydrogen is released.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: December 30, 2014
    Assignee: Sigma-Aldrich Co. LLC
    Inventors: Viktor Balema, Kanth Josyula, Guolin Xu, Nathaniel Wallock, Scott Batcheller, Peng Gao, Shashi Jasty
  • Publication number: 20130136671
    Abstract: According to various embodiments, a reagent fluid dispensing device may be provided. The reagent fluid dispensing device may include a chamber for receiving a reagent fluid, the chamber having a first opening and a second opening; a first fluid conduit connected to the first opening of the chamber; a reservoir connected to the first fluid conduit, the reservoir having a first opening, wherein the first opening of the reservoir is connected to the first fluid conduit to form a passive valve, wherein the reservoir is dimensionalized for storing a predetermined volume of the reagent fluid; and a pneumatic conduit connected to the second opening of the chamber, wherein selective application of pneumatic pressure to the chamber through the pneumatic conduit transfers the reagent fluid from the reservoir to the chamber through the first fluid conduit. According to various embodiments, a microfluidic device including the reagent fluid dispensing device, and a method of dispensing a reagent fluid may be provided.
    Type: Application
    Filed: May 4, 2011
    Publication date: May 30, 2013
    Inventors: Mo-Huang Li, Jackie Y. Yang, Guolin Xu, Yoke San Daniel Lee, Emril Mohamed Ali, Tseng-Ming Hsieh
  • Patent number: 8343443
    Abstract: A micro-fluidic device comprises a body. The body defines pneumatic ports, chambers for receiving liquids, and a connecting conduit. Each port is sealed with a seal and is shaped to couple to a pneumatic conduit through the seal. At least some of the chambers each have a top opening and a bottom opening. The top openings are in fluid communication with corresponding ports. The bottom openings are in fluid communication with one another through the connecting conduit, which is above the bottom openings. Selective application of pneumatic pressures to the chambers through the pneumatic conduits can transfer a liquid from one chamber to another through the connecting conduit, for example, for processing bio-samples within the device.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: January 1, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Jackie Y. Ying, Guolin Xu, Hock Ming Jeremy Loh
  • Publication number: 20120301382
    Abstract: The present invention provides compositions comprising a metal amidoborane and an amine, and processes for preparing the metal amidoborane compositions. In particular, the process comprises contacting ammonia borane with a metal amide in the presence of an amine solvent to form the metal amidoborane composition. The invention also provides methods for generating hydrogen, wherein the method comprises heating the metal amidoborane composition such that hydrogen is released.
    Type: Application
    Filed: April 13, 2010
    Publication date: November 29, 2012
    Applicant: SIGMA ALDRICH CO. LLC
    Inventors: Viktor Balema, Kanth Josyula, Guolin Xu, Nathaniel Wallock, Scott Batcheller, Peng Gao, Shashi Jasty
  • Patent number: 8268177
    Abstract: A microfluidic separation system, which comprises a magnetic separator, which itself comprises a magnetic energy source; first and second magnetically conductive members leading from the magnetic energy source and having respective terminal ends that are separated by a gap over which a magnetic field is applied due to the magnetic energy source. The separation system further comprises a microfluidic chip for insertion into the gap, which comprises a body defining channels on respective faces of the body; and an exterior lining that seals the plurality of channels to allow separate test sample volumes to circulate in at least two of the channels. Upon insertion of the chip into the gap, a first test sample volume is confined to circulating closer to the terminal end of the first member and a second test sample volume is confined to circulating closer to the terminal end of the second member.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: September 18, 2012
    Assignee: Agency for Science, Technology and Research
    Inventors: Jackie Y. Ying, Guolin Xu, Yoke San Daniel Lee
  • Publication number: 20120024770
    Abstract: A microfluidic separation system, which comprises a magnetic separator, which itself comprises a magnetic energy source; first and second magnetically conductive members leading from the magnetic energy source and having respective terminal ends that are separated by a gap over which a magnetic field is applied due to the magnetic energy source. The separation system further comprises a microfluidic chip for insertion into the gap, which comprises a body defining channels on respective faces of the body; and an exterior lining that seals the plurality of channels to allow separate test sample volumes to circulate in at least two of the channels. Upon insertion of the chip into the gap, a first test sample volume is confined to circulating closer to the terminal end of the first member and a second test sample volume is confined to circulating closer to the terminal end of the second member.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 2, 2012
    Inventors: Jackie Y. Ying, Guolin Xu, Yoke San Daniel Lee
  • Publication number: 20110030809
    Abstract: A micro-fluidic device comprises a body. The body defines pneumatic ports, chambers for receiving liquids, and a connecting conduit. Each port is sealed with a seal and is shaped to couple to a pneumatic conduit through the seal. At least some of the chambers each have a top opening and a bottom opening. The top openings are in fluid communication with corresponding ports. The bottom openings are in fluid communication with one another through the connecting conduit, which is above the bottom openings. Selective application of pneumatic pressures to the chambers through the pneumatic conduits can transfer a liquid from one chamber to another through the connecting conduit, for example, for processing bio-samples within the device.
    Type: Application
    Filed: June 23, 2008
    Publication date: February 10, 2011
    Inventors: Jackie Y. Ying, Guolin Xu, Hock Ming Jeremy Loh
  • Patent number: 7611840
    Abstract: A device for sample tissue disruption and/or cell lysis comprising: a piezoelectric material; and at least a second material in contact with the piezoelectric material; and wherein the second material has an uneven surface on an opposite side to that in contact with the piezoelectric material. The device may be made by assembling at least three layers and membranes for the valves and pumps. The piezoelectric material is actuated by an external voltage source to generate cavitation, which disrupts tissue and/or lyses cells, in particular by a modulated alternative external voltage. The invention further provides a method of disrupting tissue and/or lysing cells in a device. Also provided is a piezoelectric device comprising a piezoelectric material in contact with a second material, and wherein the second material has an uneven surface on an opposite side to that in contact with the piezoelectric material.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: November 3, 2009
    Assignee: Agency for Science, Technology and Research
    Inventors: Guolin Xu, Pei-Lin Mao, Yuan Hong Yu, Eng Hock Francis Tay
  • Patent number: 7563588
    Abstract: An electrically non-conductive, nanoparticulate membrane comprising nanoparticles of at least one inorganic oxide of an element selected from Group IA, IIA, IIIA, IVA, IB, IIB, IIIB, IVAB, VB, VIB, VIIB or VIIIB of the Periodic Table, and wherein an oxidoreductase enzyme and a polymeric redox mediator capable of transferring electrons are diffusibly dispersed in said nanoparticulate membrane.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: July 21, 2009
    Assignee: Agency for Science, Technology and Research
    Inventors: Zhiqiang Gao, Guolin Xu, Yi-Ru Jackie Ying, Mohamed Shariff Mohamed Arshad, Fang Xie
  • Publication number: 20090155877
    Abstract: A biochip (100) for lysing and/or cell separation is formed to provide a sealed chamber for biological fluid. A conductive layer (140) bonded between upper (130) and lower (150) insulating layers is etched to form a microfluidic channel (250) between two electrodes (190, 200). The microfluidic channel connects a fluid inlet (11) and fluid outlet (120). The electrodes (190, 200) form an un-even electric field in the channel (250) to generate a dielectrophoretic force on the cells/particles within the sample fluid. A voltage source applies a suitable voltage to separate and/or lyse cells within the fluid.
    Type: Application
    Filed: July 5, 2005
    Publication date: June 18, 2009
    Applicant: Agency for Science Technology and Research
    Inventors: Ciprian Iliescu, Guolin Xu, Francis Eng-Hock Tay
  • Publication number: 20080063543
    Abstract: A micro-pump having a first layer, a second layer and an intermediate flexible layer is disclosed. The first layer and second layer may be of moldable plastics. The intermediate layer may be a substantially flat PDMS membrane layer having an inlet hole and an outlet hole. The first layer and the second layer are disposed on either side of the intermediate layer to define a pumping chamber that encloses an actuatable portion of the intermediate layer and valve seats that abut the inlet hole and the outlet hole of the intermediate layer. The actuatable portion is moveable to increase and reduce the volume of the pumping chamber to allow pressure to lift the respective intermediate layer portions surrounding the inlet hole and the outlet hole to thereby draw fluid and expel fluid from the pumping chamber respectively.
    Type: Application
    Filed: October 15, 2007
    Publication date: March 13, 2008
    Applicant: Agency for Science Technology and Research
    Inventors: Guolin Xu, Lin-Kiat Saw, Dor Ting
  • Patent number: 7284966
    Abstract: A micro-pump having a first layer, a second layer and an intermediate flexible layer is disclosed. The first layer and second layer may be of moldable plastics. The intermediate layer may be a substantially flat PDMS membrane layer having an inlet hole and an outlet hole. The first layer and the second layer are disposed on either side of the intermediate layer to define a pumping chamber that encloses an actuatable portion of the intermediate layer and valve seats that abut the inlet hole and the outlet hole of the intermediate layer. The actuatable portion is moveable to increase and reduce the volume of the pumping chamber to allow pressure to lift the respective intermediate layer portions surrounding the inlet hole and the outlet hole to thereby draw fluid and expel fluid from the pumping chamber respectively.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: October 23, 2007
    Assignee: Agency for Science, Technology & Research
    Inventors: Guolin Xu, Lin Kiat Saw, Dor Ngi Ting
  • Publication number: 20070092876
    Abstract: The present invention relates to methods and system for tissue cell and/or nucleic acid molecule isolation. In particular, to a method for isolating nucleic acid molecules from tissue samples comprising: i) treating a tissue sample with at least one enzyme for tissue dissociation; ii) adding a lytic solution; and iii) isolating nucleic acid molecules. The method further comprises a step of applying hydrodynamic shear force to the product of step (i). The methods and/or system according to the invention are adaptable for use with micromechanical and/or automated processes.
    Type: Application
    Filed: November 10, 2003
    Publication date: April 26, 2007
    Inventor: Guolin Xu
  • Publication number: 20070042377
    Abstract: A sensor for determining the presence of an analyte in a test sample, said sensor comprising a nanoparticulate membrane comprising nanoparticles of at least one inorganic oxide of an element selected from Group IA, IIA, IIIA, IVA, IB, IIB, IIIB, IVAB, VB, VIB, VIII3 or VIIII3 of the Periodic Table, and wherein an oxidoreductase and an electrochemical activator are diffusibly dispersed in said nanoparticulate membrane.
    Type: Application
    Filed: October 25, 2004
    Publication date: February 22, 2007
    Inventors: Zhiqiang Gao, Guolin Xu, Yi-Ru Ying, Mohamed Mohemed Arshad, Fang Xie
  • Publication number: 20060030796
    Abstract: A device for sample tissue disruption and/or cell lysis comprising: a piezoelectric material; and at least a second material in contact with the piezoelectric material; and wherein the second material has an uneven surface on an opposite side to that in contact with the piezoelectric material. The device may be made by assembling at least three layers and membranes for the valves and pumps. The piezoelectric material is actuated by an external voltage source to generate cavitation, which disrupts tissue and/or lyses cells, in particular by a modulated alternative external voltage. The invention further provides a method of disrupting tissue and/or lysing cells in a device comprising the steps: loading a sample and reagents; actuating a piezoelectric material; obtaining disrupted tissue and/or lysed cells; and recovering the eluate.
    Type: Application
    Filed: August 3, 2004
    Publication date: February 9, 2006
    Applicant: Agency for Science, Technology and Research
    Inventors: Guolin Xu, Pei-Lin Mao, Yuan Yu, Eng Hock Tay
  • Publication number: 20050074340
    Abstract: A micro-pump having a first layer, a second layer and an intermediate flexible layer is disclosed. The first layer and second layer may be of moldable plastics. The intermediate layer may be a substantially flat PDMS membrane layer having an inlet hole and an outlet hole. The first layer and the second layer are disposed on either side of the intermediate layer to define a pumping chamber that encloses an actuatable portion of the intermediate layer and valve seats that abut the inlet hole and the outlet hole of the intermediate layer. The actuatable portion is moveable to increase and reduce the volume of the pumping chamber to allow pressure to lift the respective intermediate layer portions surrounding the inlet hole and the outlet hole to thereby draw fluid and expel fluid from the pumping chamber respectively.
    Type: Application
    Filed: October 1, 2003
    Publication date: April 7, 2005
    Applicant: Agency for Science, Technology and Research
    Inventors: Guolin Xu, Lin Saw, Dor Ting
  • Patent number: 6573622
    Abstract: An integrated coil assembly (10), a multi-phase linear motor having the integrated coil assembly (10) and a method (100) for forming the integrated coil assembly (10) are described. The integrated coil assembly (10) has multi-phase coils with each multi-phase coil (20) having a number of coil loops based upon the number of electrical phases of current required by the multi-phase linear motor. The coil loops of different multi-phase coils are interweaved at two opposing portions (11,12) and are substantially parallel at two other opposing portions (13,14). In the method (100), different wire dispensers wind coil loops for different electrical phase for each multi-phase coil (20). However, the same wire dispenser winds coil loops that are for the same electrical phase for different multi-phase coils (20). The coil loops for each multi-phase coil (20) are wound before the coil loops of another multi-phase coil (20) are wound.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: June 3, 2003
    Assignee: PBA Systems PTE Ltd.
    Inventors: Howe Yuen Lim, Chai Meng Goh, Guolin Xu