Patents by Inventor H. Kao
H. Kao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11288464Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: August 3, 2020Date of Patent: March 29, 2022Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Publication number: 20200364418Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: ApplicationFiled: August 3, 2020Publication date: November 19, 2020Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Patent number: 10733393Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: September 18, 2019Date of Patent: August 4, 2020Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Publication number: 20200050804Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: ApplicationFiled: September 18, 2019Publication date: February 13, 2020Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Patent number: 10467440Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: September 5, 2018Date of Patent: November 5, 2019Assignee: AMTECH SYSTEMS, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Publication number: 20180373905Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: ApplicationFiled: September 5, 2018Publication date: December 27, 2018Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Patent number: 10083329Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: October 6, 2017Date of Patent: September 25, 2018Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Publication number: 20180032766Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: ApplicationFiled: October 6, 2017Publication date: February 1, 2018Inventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Patent number: 9785804Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: April 29, 2016Date of Patent: October 10, 2017Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Publication number: 20160321476Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: ApplicationFiled: April 29, 2016Publication date: November 3, 2016Inventors: Kelly GRAVELLE, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Patent number: 9361492Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: August 12, 2015Date of Patent: June 7, 2016Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Patent number: 9328024Abstract: Described herein are methods of improving the durability of concrete by the infusion of the concrete with a low-viscosity oligomeric solution, and subsequent curing of the oligomeric solution to form a high toughness polymer. Also described herein are compositions containing concrete and high toughness polymers, and formed articles made from concrete and high toughness polymers. The methods and compositions are useful for improving the durability of concrete roads and structures, as well as the durability of repairs to concrete roads.Type: GrantFiled: April 28, 2011Date of Patent: May 3, 2016Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Wei H. Kao, Larry Carlson, Jenn-Ming Yang, Jiann-Wen Woody Ju
-
Patent number: 9262656Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: February 16, 2015Date of Patent: February 16, 2016Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Publication number: 20160004893Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: ApplicationFiled: August 12, 2015Publication date: January 7, 2016Inventors: Kelly GRAVELLE, Steven J. CATANACH, Robert W. TIERNAY, Joseph H. KAO, Michael MELVILLE
-
Patent number: 9135480Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators arc synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: June 15, 2007Date of Patent: September 15, 2015Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Publication number: 20150161422Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGOTM RFID backscatter transponders, SEGOTM RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: ApplicationFiled: February 16, 2015Publication date: June 11, 2015Inventors: Kelly GRAVELLE, Steven J. CATANACH, Robert W. TIERNAY, Joseph H. KAO, Michael MELVILLE
-
Patent number: 8779968Abstract: A system for measuring the range to an RFID tag including situations containing high clutter and multi-path signals is disclosed. The system includes an RFID reader; an RFID tag; and a coordinated pulse radar system. In the system the RFID reader causes the tag to respond to received signals in a first backscatter state at a first time and a second backscatter state at a second time. The pulsed radar system transmits short pulses coordinated by the backscatter state of the RFID tag and the system creates a differential signal comprised of the differences between radar signals obtained during the first and second states of the tag to obtain an uncorrupted measure of a round trip time of flight of said radar pulses between the pulse radar system and the RFID tag.Type: GrantFiled: April 27, 2011Date of Patent: July 15, 2014Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Jeremy Landt, Joseph H. Kao, Michael P. Gonzales
-
Publication number: 20140056643Abstract: Described herein are methods of improving the durability of concrete by the infusion of the concrete with a low-viscosity oligomeric solution, and subsequent curing of the oligomeric solution to form a high toughness polymer. Also described herein are compositions containing concrete and high toughness polymers, and formed articles made from concrete and high toughness polymers. The methods and compositions are useful for improving the durability of concrete roads and structures, as well as the durability of repairs to concrete roads.Type: ApplicationFiled: October 25, 2013Publication date: February 27, 2014Inventors: Wei H. Kao, Larry Carlson, Jenn-Ming Yang, Jiann-Wen Ju, Wei Yuan
-
Patent number: 8427279Abstract: A multi-protocol RFID interrogating system employs a synchronization technique (step-lock) for a backscatter RFID system that allows simultaneous operation of closely spaced interrogators. The multi-protocol RFID interrogating system can communicate with backscatter transponders having different output protocols and with active transponders including: Title 21 compliant RFID backscatter transponders; IT2000 RFID backscatter transponders that provide an extended mode capability beyond Title 21; EGO™ RFID backscatter transponders, SEGO™ RFID backscatter transponders; ATA, ISO, ANSI AAR compliant RFID backscatter transponders; and IAG compliant active technology transponders. The system implements a step-lock operation, whereby adjacent interrogators are synchronized to ensure that all downlinks operate within the same time frame and all uplinks operate within the same time frame, to eliminate downlink on uplink interference.Type: GrantFiled: May 13, 2011Date of Patent: April 23, 2013Assignee: Amtech Systems, LLCInventors: Kelly Gravelle, Steven J. Catanach, Robert W. Tiernay, Joseph H. Kao, Michael Melville
-
Patent number: 8327300Abstract: Disclosed is a method, system, and article of manufacture for a one-pass approach for implementing metal-fill for an integrated circuit. Also disclosed is a method, system, and article of manufacture for implementing metal-fill that is coupled to a tie-off connection. An approach that is disclosed comprises a method, system, and article of manufacture for implementing metal-fill having an elongated shape that corresponds to the length of whitespace. Also disclosed is the aspect of implementing metal-fill that matches the routing direction. Yet another disclosure is an implementation of a place & route tool incorporating an integrated metal-fill mechanism.Type: GrantFiled: February 4, 2008Date of Patent: December 4, 2012Assignee: Cadence Design Systems, Inc.Inventors: Thanh Vuong, William H. Kao, David C. Noice