Patents by Inventor Hagop Nazarian

Hagop Nazarian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9685483
    Abstract: A circuit operable as a non-volatile memory cell, formed in part from a volatile selection device, is provided. The circuit can be fabricated utilizing Integrated Circuit (IC)-Foundry compatible processes to simplify manufacturing, reduce cost and improve yield. For instance, the circuit can comprise a set of transistors fabricated at least in part with front-end-of-line IC processes, and can comprise the volatile selection device and a set of interconnects fabricated at least in part with back-end-of-line IC processes. In further embodiments, the volatile selection device can be a two-terminal, volatile resistive-switching device connected at one end to a gate of an n-well transistor, and connected at a second end to a gate of a p-well transistor.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: June 20, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo, Harry Yue Gee
  • Patent number: 9659642
    Abstract: A detection circuit that can detect a two-terminal memory cell changing state. For example, in response to electrical stimuli, a memory cell will change state (e.g., to a highest resistance state), but existing techniques do not detect this state change until after the stimuli is completed and a subsequent sensing operation (e.g., read pulse) is performed. The detection circuit can detect the state change during application of the electrical stimuli that causes the state change.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: May 23, 2017
    Assignee: Crossbar, Inc.
    Inventors: Sang Nguyen, Cung Vu, Dzung Huu Nguyen, Hagop Nazarian, John Nguyen, Tianhong Yan
  • Patent number: 9659646
    Abstract: A non-volatile programmable circuit configurable to perform logic functions, is provided. The programmable circuit can employ two-terminal non-volatile memory devices to store information, thereby mitigating or avoiding disturbance of programmed data in the absence of external power. Two-terminal resistive switching memory devices having high current on/off ratios and fast switching times can also be employed for high performance, and facilitating a high density array. For look-up table applications, input/output response times can be several nanoseconds or less, facilitating much faster response times than a memory array access for retrieving stored data.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: May 23, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Mehdi Asnaashari, Hagop Nazarian, Lin Shih Liu
  • Patent number: 9633724
    Abstract: Providing for improved sensing of non-volatile resistive memory to achieve higher sensing margins, is described herein. The sensing can leverage current-voltage characteristics of a volatile selector device within the resistive memory. A disclosed sensing process can comprise activating the selector device with an activation voltage, and then lowering the activation voltage to a holding voltage at which the selector device deactivates for an off-state memory cell, but remains active for an on-state memory cell. Accordingly, very high on-off ratio characteristics of the selector device can be employed for sensing the resistive memory, providing sensing margins not previously achievable for non-volatile memory.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 25, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Hagop Nazarian, Lin Shih Liu
  • Patent number: 9633723
    Abstract: Providing for resistive random access memory (RRAM) having high read speeds is described herein. By way of example, a RRAM memory can be powered at one terminal by a bitline, and connected at another terminal to a gate of a transistor having a low gate capacitance (relative to a capacitance of the bitline). With this arrangement, a signal applied at the bitline can quickly switch the transistor gate, in response to the RRAM memory being in a conductive state. A sensing circuit configured to measure the transistor can detect a change in current, voltage, etc., of the transistor and determine a state of the RRAM memory from the measurement. Moreover, this measurement can occur very quickly due to the low capacitance of the transistor gate, greatly improving the read speed of RRAM.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: April 25, 2017
    Assignee: Crossbar, Inc.
    Inventors: Sang Nguyen, Hagop Nazarian
  • Patent number: 9627057
    Abstract: Providing for programming a two-terminal memory cell array with low sneak path current is described herein. Groups of two-terminal memory cells can be arranged into blocks or sub-blocks, along sets of bitlines and local wordlines. Further, groups of local wordlines within a given sub-block can be electrically isolated from bitlines outside the sub-block. A programming signal can be applied to the two-terminal memory cells from an associated local wordline thereof. Sneak path currents can be mitigated or avoided with respect to bitlines outside a particular sub-block, or on non-selected wordlines of the sub-block. This can significantly reduce a magnitude of combined sneak path current within the sub-block in response to the programming operation.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: April 18, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sang Nguyen
  • Patent number: 9620206
    Abstract: A non-volatile memory device includes a word line extending along a first direction; a bit line extending along a second direction; a memory unit having a read transistor coupled to the bit line, at least one two-terminal memory cell, and a select transistor, the two-terminal memory cell having a first end coupled to the word line and a second end coupled to a gate of the read transistor. The second end of the two-terminal memory cell is coupled to a common node shared by a drain of the select transistor and the gate of the read transistor.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: April 11, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo, Wei Lu
  • Patent number: 9601194
    Abstract: Providing for a high performance and efficiency NAND architecture is described herein. By way of example, a NAND array is disclosed comprising memory cells having a 1 transistor-1 two-terminal memory device (IT-1D) arrangement. Memory cells of the NAND array can be arranged electrically in serial with respect to each other, from source to drain. Moreover, respective memory cells comprise a transistor component connected in parallel to a two-terminal memory device. In some embodiments, a resistance of the activated transistor component is selected to be substantially less than that of the two-terminal memory device, and the resistance of the deactivated transistor component is selected to be substantially higher than the two-terminal memory device. Accordingly, by activating or deactivating the transistor component, a signal applied to the memory cell can be shorted past the two-terminal memory device, or directed through the two-terminal memory device, respectively.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: March 21, 2017
    Assignee: CROSSBAR, INC.
    Inventor: Hagop Nazarian
  • Patent number: 9600410
    Abstract: Providing a RRAM based memory storage device that has a NAND memory type architecture with a configurable page size. In an embodiment, two memory registers can be used to access and transfer data stored in the storage device to a host. A memory controller on the storage device can determine a page size of the host, and alternately transfer data from the first register and then the second register until an amount of data transferred equals the page size of the host. The memory controller can send the data to the host as if the data belonged to one page transfer. In this way, the memory controller creates a virtualized page size based on the requirements of the host.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: March 21, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Cliff Zitlaw
  • Patent number: 9576616
    Abstract: Providing for a non-volatile memory architecture having write and overwrite capabilities providing low write amplification to a storage system is described herein. By way of example, a memory array is disclosed comprising blocks and sub-blocks of two-terminal memory cells. The two-terminal memory cells can be directly overwritten in some embodiments, facilitating a write amplification value as low as one. Furthermore, the memory array can have an input-output multiplexer configuration, reducing sneak path currents of the memory architecture during memory operations.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: February 21, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sang Nguyen
  • Patent number: 9570678
    Abstract: A non-volatile memory device includes a first dielectric on a substrate, a first electrode disposed on the first dielectric, a second dielectric material disposed next to the first electrode, a patterned material disposed upon the second dielectric material and in contact with part of the first electrode, a third dielectric material disposed next to the patterned material and in contact with another part of the first electrode, wherein the patterned material and the third dielectric material contact at an interface region, wherein the interface region is characterized by a plurality of defects, a second electrode disposed on the patterned material, on the third dielectric, and on the interface region, wherein the second electrode comprises metal particles that are configured to be diffused within the interface region upon application of a bias voltage, and wherein metal particles are disposed within the plurality of defects in the interface region.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: February 14, 2017
    Assignee: CROSSBAR, INC.
    Inventors: Sung Hyun Jo, Hagop Nazarian
  • Patent number: 9460788
    Abstract: A non-volatile memory device is provided that uses one or more volatile elements. In some embodiments, the non-volatile memory device can include a resistive two-terminal selector that can be in a low resistive state or a high resistive state depending on the voltage being applied. A MOS (“metal-oxide-semiconductor”) transistor in addition to a capacitor or transistor acting as a capacitor can also be included. A first terminal of the capacitor can be connected to a voltage source, and the second terminal of the capacitor can be connected to the selector device. A floating gate of an NMOS transistor can be connected to the other side of the selector device, and a second NMOS transistor can be connected in series with the first NMOS transistor.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: October 4, 2016
    Assignee: Crossbar, Inc.
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Publication number: 20160268341
    Abstract: A high density non-volatile memory device is provided that uses one or more volatile elements. In some embodiments, the non-volatile memory device can include a resistive two-terminal selector that can be in a low resistive state or a high resistive state depending on the voltage being applied. A deep trench MOS (“metal-oxide-semiconductor”) transistor having a floating gate with small area relative to conventional devices can be provided, in addition to a capacitor or transistor acting as a capacitor. A first terminal of the capacitor can be connected to a voltage source, and the second terminal of the capacitor can be connected to the selector device. The small area floating gate of the deep trench transistor can be connected to the other side of the selector device, and a second transistor can be connected in series with the deep trench transistor.
    Type: Application
    Filed: July 9, 2015
    Publication date: September 15, 2016
    Inventors: Hagop Nazarian, Sung Hyun Jo, Harry Yue Gee
  • Patent number: 9437297
    Abstract: A method for programming a two terminal resistive memory device, the method includes applying a bias voltage to a first electrode of a resistive memory cell of the device; measuring a current flowing through the cell; and stopping the applying of the bias voltage if the measured current is equal to or greater than a predetermined value.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: September 6, 2016
    Assignee: Crossbar, Inc.
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Patent number: 9431109
    Abstract: Various aspects provide for a new combination of non-volatile memory architecture and memory processing technology. A memory cell has a gate node, a source node and a drain node. The gate node is connected to a wordline of the memory, the source node is connected to a local source line of the memory, and the drain node is connected to a local data line of the memory. A channel-based processing component programs the memory cell and inhibits programming of a second memory cell on the wordline of the memory. The channel-based processing component also grounds the local source line and the local data line in conjunction with programming the memory cell, and floats a second local source line and a second local data line connected to the second memory cell in conjunction with inhibiting programming of the second memory cell.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: August 30, 2016
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Hagop Nazarian, Richard Fastow
  • Publication number: 20160225442
    Abstract: A retainer node circuit is provided that can retain state information of a volatile circuit element (e.g., a flip-flop, latch, switch, register, etc.) of an electronic device for planned or unplanned power-down events. The retainer node circuit can include a resistive-switching memory cell that is nonvolatile, having very fast read and write performance. Coupled with power management circuitry, the retainer node circuit can be activated to receive and store a signal (e.g., bit) output by the volatile circuit element, and activated to output the stored signal. Various embodiments disclose non-volatile retention of state information for planned shut-down events as well as unplanned shut-down events. With read and write speeds in the tens of nanoseconds, sleep mode can be provided for volatile circuit elements between clock cycles of longer time-frame applications, enabling intermittent power-down events between active periods. This enables reduction in power without loss of activity for an electronic device.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 4, 2016
    Inventors: Mehdi Asnaashari, Hagop Nazarian
  • Patent number: 9385319
    Abstract: A resistive memory device includes a first metallic layer comprising a source of positive metallic ions, a switching media having an upper surface and a lower surface, wherein the upper surface is adjacent to the first metallic layer, wherein the switching media comprises conductive filaments comprising positive metallic ions from the source of positive metallic ions formed from the upper surface towards the lower surface, a semiconductor substrate, a second metallic layer disposed above the semiconductor substrate, a non-metallic conductive layer disposed above the second metallic layer, and an interface region between the non-metallic conductive layer and the switching media having a negative ionic charge.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: July 5, 2016
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Publication number: 20160190208
    Abstract: A circuit operable as a non-volatile memory cell, formed in part from a volatile selection device, is provided. The circuit can be fabricated utilizing Integrated Circuit (IC)-Foundry compatible processes to simplify manufacturing, reduce cost and improve yield. For instance, the circuit can comprise a set of transistors fabricated at least in part with front-end-of-line IC processes, and can comprise the volatile selection device and a set of interconnects fabricated at least in part with back-end-of-line IC processes. In further embodiments, the volatile selection device can be a two-terminal, volatile resistive-switching device connected at one end to a gate of an n-well transistor, and connected at a second end to a gate of a p-well transistor.
    Type: Application
    Filed: March 10, 2016
    Publication date: June 30, 2016
    Inventors: Hagop Nazarian, Sung Hyun Jo, Harry Yue Gee
  • Patent number: 9362293
    Abstract: Providing for a non-volatile semiconductor memory architecture that achieves high read performance is described herein. In one aspect, an array of memory transistors arranged electrically in serial is configured to control a gate voltage of a pass transistor. The pass transistor, in turn, enables current flow between two metal bitlines of the semiconductor memory architecture. Accordingly, a relative voltage or relative current of the two metal bitlines can be measured and utilized to determine a program or erase state of a transistor of the serial array of transistors. In a particular aspect, a transistor with small capacitance is chosen for the pass transistor, resulting in a fast correspondence of the pass transistor gate voltage/current relative to transistor array current. This can equate to fast read times for the transistor array, based on differential sensing of the two metal bitlines.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 7, 2016
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Hagop Nazarian, Richard Fastow, Lei Xue
  • Patent number: RE46335
    Abstract: Method for a memory including a first, second, third and fourth cells include applying a read, program, or erase voltage, the first and second cells coupled to a first top interconnect, the third and fourth cells coupled to a second top interconnect, the first and third cells coupled to a first bottom interconnect, the second and fourth cells are to a second bottom interconnect, each cell includes a switching material overlying a non-linear element (NLE), the resistive switching material is associated with a first conductive threshold voltage, the NLE is associated with a lower, second conductive threshold voltage, comprising applying the read voltage between the first top and the first bottom electrode to switch the NLE of the first cell to conductive, while the NLEs of the second, third, and the fourth cells remain non-conductive, and detecting a read current across the first cell in response to the read voltage.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: March 7, 2017
    Assignee: Crossbar, Inc.
    Inventors: Wei Lu, Sung Hyun Jo, Hagop Nazarian