Patents by Inventor Hailing Cui

Hailing Cui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11444224
    Abstract: A light-emitting semiconductor component may include a conversion layer, a radiation surface, and a plurality of adjacently arranged emission regions configured to be operated separately, individually and/or in groups. The conversion layer may be arranged downstream of the emission regions in the direction of radiation of the emission regions. The emission regions may be configured to emit primary radiation of a first wavelength range into the conversion layer. The conversion layer may be configured to convert at least a portion of the primary radiation into secondary radiation of a second wavelength range. Mixed radiation is configured to be emitted from the light-emitting semiconductor component at the radiation surface. The mixed radiation may include primary radiation and secondary radiation. A probability that primary radiation travelling from the emission region to the radiation surface is converted into secondary radiation may vary along the radiation surface by a maximum factor of 2.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: September 13, 2022
    Assignee: OSRAM OLED GMBH
    Inventors: Ulrich Streppel, Hailing Cui, Desiree Queren, Dajana Durach
  • Patent number: 11292965
    Abstract: A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes Sr(SraCa1-a)Si2Al2N6:Eu, wherein x is 0.8<x?1, wherein between 0.1% and 5% inclusive of the Sr, Ca and/or Sr/Ca lattice sites are replaced by Eu, wherein the parameter value a is between 0.6 and 1.0 inclusive, wherein the phosphor has a structure comprising (Si/Al)N4 tetrahedra arranged in a 3D network, in which layers in an a-c plane are linked in a b-direction, and wherein pure Sr positions and positions having a mixed Sr/Ca population are intercalated between the network, layer by layer.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: April 5, 2022
    Assignees: OSRAM OPTO SEMICONDUCTORS GMBH, OSRAM GMBH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Publication number: 20210057617
    Abstract: A light-emitting semiconductor component may include a conversion layer, a radiation surface, and a plurality of adjacently arranged emission regions configured to be operated separately, individually and/or in groups. The conversion layer may be arranged downstream of the emission regions in the direction of radiation of the emission regions. The emission regions may be configured to emit primary radiation of a first wavelength range into the conversion layer. The conversion layer may be configured to convert at least a portion of the primary radiation into secondary radiation of a second wavelength range. Mixed radiation is configured to be emitted from the light-emitting semiconductor component at the radiation surface. The mixed radiation may include primary radiation and secondary radiation. A probability that primary radiation travelling from the emission region to the radiation surface is converted into secondary radiation may vary along the radiation surface by a maximum factor of 2.
    Type: Application
    Filed: January 25, 2019
    Publication date: February 25, 2021
    Inventors: Ulrich STREPPEL, Hailing CUI, Desiree QUEREN, Dajana DURACH
  • Publication number: 20200291294
    Abstract: A phosphor and a method for making the phosphor are disclosed. In an embodiment a phosphor for emission of red light includes SrxCa1?xAlSiN3:Eu, wherein x is: 0.8<x?1, wherein between 0.1% and 5% inclusive of the Sr, Ca and/or Sr/Ca lattice sites are replaced by Eu, wherein, in a x-ray structure analysis, the phosphor in orthorhombic description exhibits a reflection (R) having Miller indices 1 2 1, wherein the phosphor has a structure including (Si/Al)N4 tetrahedra arranged in a 3D network, in which layers in an a-c plane are linked in a b-direction, and wherein pure Sr positions and positions having a mixed Sr/Ca population are intercalated between the network, layer by layer.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 17, 2020
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Roemer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Boenisch, Hailing Cui
  • Publication number: 20200295236
    Abstract: A method for manufacturing an optoelectronic semiconductor device and an optoelectronic semiconductor device are disclosed. In an embodiment a method includes applying a photostructurable first photo layer on the radiation side of a semiconductor layer sequence, photostructuring the first photo layer, wherein holes are formed in the first photo layer in regions of first illumination areas, applying a first converter material to the structured first photo layer, wherein the first converter material partially or completely fills the holes, thereby forming first converter elements in the holes, the first converter elements covering the associated first illumination areas, removing the first photo layer; and applying a second converter material to the radiation side at least in regions of second illumination areas, the second illumination areas being different from the first illumination areas.
    Type: Application
    Filed: August 28, 2018
    Publication date: September 17, 2020
    Applicant: OSRAM OLED GmbH
    Inventors: Markus Pindl, Hailing Cui
  • Patent number: 10711191
    Abstract: A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1?a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 14, 2020
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 10224467
    Abstract: A method for producing a plurality of conversion elements (10) is specified, comprising providing a carrier substrate (1), introducing a converter material (3) into a matrix material (2), applying the matrix material (2) with the converter material (3) to individual regions (8) of the carrier substrate (1) in a non-continuous pattern, applying a barrier substrate (5) to the matrix material (2) and to the carrier substrate (1), and singulating the carrier substrate (1) with the matrix material (2) and the barrier substrate (5) into a plurality of conversion elements (10) along singulation lines (V), wherein the conversion elements (10) in each case comprise at least one of the regions (8) of the matrix material (2).
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: March 5, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Hailing Cui, Norwin Von Malm, Britta Goeoetz, Robert Schulz, Dominik Schulten
  • Patent number: 10190046
    Abstract: A luminescent material mixture has a first luminescent material and a second luminescent material, wherein, under excitation with blue light, an emission spectrum of the first luminescent material has a relative intensity maximum in a yellowish-green region of the spectrum at a wavelength of greater than or equal to 540 nm and less than or equal to 560 nm and an emission spectrum of the second luminescent material has a relative intensity maximum in an orange-red region of the spectrum at a wavelength of greater than or equal to 600 nm and less than or equal to 620 nm.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: January 29, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Rebecca Römer, Barbara Huckenbeck, Stefan Lange, Hailing Cui
  • Publication number: 20170306224
    Abstract: A phosphor and a lighting device are disclosed. In an embodiment a lighting device includes a first phosphor disposed in a beam path of the primary radiation source, wherein the first phosphor has the formula Sr(SraM1?a)Si2Al2(N,X)6:D,A,B,E,G,L, wherein element M is selected from Ca, Ba, Mg or combinations thereof, wherein element D is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals or Yb, wherein element A is selected from divalent metals different than those of the elements M and D, wherein element B is selected from trivalent metals, wherein element E is selected from monovalent metals, wherein element G is selected from tetravalent elements, wherein element L is selected from trivalent elements, wherein element X is selected from O or halogen, and wherein a parameter a is between 0.6 and 1.0.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 9761767
    Abstract: A light source includes a primary radiation source, which emits radiation in the shortwave range of the optical spectral range, wherein this radiation is converted at least by means of a first luminescent substance entirely or partially into secondary longer-wave radiation in the visible spectral range, wherein the first luminescent substance originates from the class of nitridic modified orthosilicates (NOS), wherein the luminescent substance has as a component M predominantly the group EA=Sr, Ba, Ca, or Mg alone or in combination, wherein the activating dopant D is composed at least of Eu and replaces a proportion of M, and wherein a proportion of SiO2 is introduced in deficiency, so that a modified sub-stoichiometric orthosilicate is provided, wherein the orthosilicate is an orthosilicate stabilized with RE and N, where RE=rare earth metal.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: September 12, 2017
    Assignees: OSRAM OPTO SEMICONDUCTORS GMBH, OSRAM GMBH
    Inventors: Barbara Huckenbeck, Hailing Cui, Frank Jermann
  • Patent number: 9761769
    Abstract: An electromagnetic radiation emitting assembly includes a carrier, an electromagnetic radiation emitting component arranged above the carrier, and a potting material at least partly surrounding the electromagnetic radiation emitting component and into which are embedded phosphor that converts the electromagnetic radiation and heat-conducting particles that conduct heat arising during operation of the electromagnetic radiation emitting assembly, wherein a phosphor concentration in the potting material near the electromagnetic radiation emitting component is greater than a particle concentration of the heat-conducting particles in the potting material near the electromagnetic radiation emitting component, and a particle concentration of the heat-conducting particles in the potting material near the electromagnetic radiation emitting component is greater than in the potting material remote from the electromagnetic radiation emitting component.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: September 12, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hailing Cui, Kathy Schmidtke
  • Patent number: 9725646
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1-a)Si2Al2N61.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: August 8, 2017
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 9719014
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1?a)Si2Al2N61.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: August 1, 2017
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 9719013
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1-a)Si2Al2N61.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: August 1, 2017
    Assignees: OSRAM Opto Semiconductors GmbH, OSRAM GmbH
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Publication number: 20170125648
    Abstract: A method for producing a plurality of conversion elements (10) is specified, comprising providing a carrier substrate (1), introducing a converter material (3) into a matrix material (2), applying the matrix material (2) with the converter material (3) to individual regions (8) of the carrier substrate (1) in a non-continuous pattern, applying a barrier substrate (5) to the matrix material (2) and to the carrier substrate (1), and singulating the carrier substrate (1) with the matrix material (2) and the barrier substrate (5) into a plurality of conversion elements (10) along singulation lines (V), wherein the conversion elements (10) in each case comprise at least one of the regions (8) of the matrix material (2).
    Type: Application
    Filed: June 10, 2015
    Publication date: May 4, 2017
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Hailing CUI, Norwin VON MALM, Britta GOEOETZ, Robert SCHULZ, Dominik SCHULTEN
  • Publication number: 20170058195
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element A1, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, A1 includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1?a)Si2Al2N61.
    Type: Application
    Filed: November 3, 2016
    Publication date: March 2, 2017
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Patent number: 9583670
    Abstract: A luminescence conversion element for wavelength conversion of primary electromagnetic radiation into secondary electromagnetic radiation includes first luminescent material particles that, when excited by the primary electromagnetic radiation, emit a first electromagnetic radiation, a peak wavelength of which is at least 515 nm to at most 550 nm of a green region of the electromagnetic spectrum; second luminescent material particles that, when excited by the primary electromagnetic radiation, emit a second electromagnetic radiation, a peak wavelength of which is at least 595 nm to at most 612 nm of a yellow-red region of the electromagnetic spectrum; and third luminescent material particles that, when excited by the primary electromagnetic radiation, emit a third electromagnetic radiation, a peak wavelength of which is at least 625 nm to at most 660 nm of a red region of the electromagnetic spectrum.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: February 28, 2017
    Assignee: OSRAM Opto Semiconductor GmbH
    Inventors: Rainer Butendeich, Hailing Cui, Reiner Windisch, Jörg Frischeisen, Stefan Lange
  • Publication number: 20160326430
    Abstract: A phosphor is disclosed. In an embodiment a phosphor includes an inorganic substance which includes, in its composition, at least an element D, an element Al, an element AX, an element SX and an element NX where D includes one, two or more elements selected from the group consisting of Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, alkali metals and Yb, Al includes one, two or more elements selected from the group consisting of divalent metals not included in D, SX includes one, two or more elements selected from the group consisting of tetravalent metals, AX includes one, two or more elements selected from the group consisting of trivalent metals, and NX includes one, two or more elements selected from the group consisting of O, N, S, C, Cl, and F, wherein the inorganic substance has the same crystal structure as Sr(SraCa1?a)Si2Al2N61.
    Type: Application
    Filed: July 18, 2016
    Publication date: November 10, 2016
    Inventors: Tim Fiedler, Daniel Bichler, Stefan Lange, Rebecca Römer, Frank Jermann, Frauke Thienel, Barbara Huckenbeck, Alexander Baumgartner, Vera Stöppelkamp, Norbert Bönisch, Hailing Cui
  • Publication number: 20160329470
    Abstract: A luminescence conversion element for wavelength conversion of primary electromagnetic radiation into secondary electromagnetic radiation includes first luminescent material particles that, when excited by the primary electromagnetic radiation, emit a first electromagnetic radiation, a peak wavelength of which is at least 515 nm to at most 550 nm of a green region of the electromagnetic spectrum; second luminescent material particles that, when excited by the primary electromagnetic radiation, emit a second electromagnetic radiation, a peak wavelength of which is at least 595 nm to at most 612 nm of a yellow-red region of the electromagnetic spectrum; and third luminescent material particles that, when excited by the primary electromagnetic radiation, emit a third electromagnetic radiation, a peak wavelength of which is at least 625 nm to at most 660 nm of a red region of the electromagnetic spectrum.
    Type: Application
    Filed: November 17, 2014
    Publication date: November 10, 2016
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Rainer Butendeich, Hailing Cui, Reiner Windisch, Jörg Frischeisen, Stefan Lange
  • Patent number: 9482409
    Abstract: A lighting device includes a first semiconductor body, which has an active zone that produces blue light having a first emission spectrum during operation, and a second semiconductor body, which has an active zone that produces green light having a second emission spectrum during operation. The lighting device also comprises a luminescent substance that is suitable for converting blue light of the first semiconductor body partially into red light having a third emission spectrum. The third emission spectrum has a peak in the red spectral range, the average half-width of which is no greater than 25 nm. The invention further relates to a backlighting device for a display or a television and to a display and a television.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: November 1, 2016
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Hailing Cui