Patents by Inventor Haizhou Yin

Haizhou Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8598595
    Abstract: The present application discloses a semiconductor device and a method for manufacturing the same.
    Type: Grant
    Filed: September 26, 2010
    Date of Patent: December 3, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8598666
    Abstract: The present invention relates to a semiconductor structure and a method for manufacturing the same.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: December 3, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Publication number: 20130309831
    Abstract: A method of manufacturing a semiconductor device, which comprises: providing a semiconductor substrate; forming a dummy gate structure and a spacer surrounding the dummy gate structure on the semiconductor substrate; forming source/drain regions on both sides of the gate structure within the semiconductor substrate using the dummy gate structure and the spacer as a mask; forming an interlayer dielectric layer on the upper surface of the semiconductor substrate, the upper surface of the interlayer dielectric layer being flush with the upper surface of the dummy gate structure; removing at least a part of the dummy gate structure so as to form a trench surrounded by the spacer; performing tilt angle ion implantation into the semiconductor substrate using the interlayer dielectric layer and spacer as a mask so as to form an asymmetric Halo implantation region; sequentially forming a gate dielectric layer and a metal gate in the trench.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu, Da Yang
  • Publication number: 20130307034
    Abstract: A method of manufacturing a semiconductor structure, which comprises the steps of: providing a substrate, forming a fin on the substrate, which comprises a central portion for forming a channel and an end portion for forming a source/drain region and a source/drain extension region; forming a gate stack to cover the central portion of the fin; performing light doping to form a source/drain extension region in the end portion of the fin; forming a spacer on sidewalls of the gate stack; performing heavy doping to form a source/drain region in the end portion of the fin; removing at least a part of the spacer to expose at least a part of the source/drain extension region; forming a contact layer on an upper surface of the source/drain region and an exposed area of the source/drain extension region. Correspondingly, the present invention also provides a semiconductor structure.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Inventors: Haizhou Yin, Wei Jiang
  • Patent number: 8587066
    Abstract: A device and method is provided that in one embodiment provides a first semiconductor device including a first gate structure on a first channel region, in which a first source region and a first drain region are present on opposing sides of the first channel region, in which a metal nitride spacer is present on only one side of the first channel region. The device further includes a second semiconductor device including a second gate structure on a second channel region, in which a second source region and a second drain region are present on opposing sides of the second channel region. Interconnects may be present providing electrical communication between the first semiconductor device and the second semiconductor device, in which at least one of the first semiconductor device and the second semiconductor device is inverted. A structure having a reverse halo dopant profile is also provided.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Zhijiong Luo, Qingqing Liang, Haizhou Yin
  • Publication number: 20130299920
    Abstract: The present invention discloses a semiconductor device, comprising a substrate, a gate stack structure on the substrate, a gate spacer structure at both sides of the gate stack structure, source/drain regions in the substrate and at opposite sides of the gate stack structure and the gate spacer structure, characterized in that the gate spacer structure comprises at least one gate spacer void filled with air. In accordance with the semiconductor device and the method for manufacturing the same of the present invention, carbon-based materials are used to form a sacrificial spacer, and at least one air void is formed after removing the sacrificial spacer, the overall dielectric constant of the spacer is effectively reduced. Thus, the gate parasitic capacitance is reduced and the device performance is enhanced.
    Type: Application
    Filed: July 3, 2012
    Publication date: November 14, 2013
    Inventors: Haizhou Yin, Keke Zhang
  • Publication number: 20130299885
    Abstract: A FinFET and a method for manufacturing the same are disclosed. The FinFET comprises an etching stop layer on a semiconductor substrate; a semiconductor fin on the etching stop layer; a gate conductor extending in a direction perpendicular to a length direction of the semiconductor fin and covering at least two side surfaces of the semiconductor fin; a gate dielectric layer between the gate conductor and the semiconductor fin; a source region and a drain region which are provided at two ends of the semiconductor fin respectively; and an interlayer insulating layer adjoining the etching stop layer below the gate dielectric layer, and separating the gate conductor from the etching stop layer and the semiconductor fin. A height of the fin of the FinFET is approximately equal to a thickness of a semiconductor layer for forming the semiconductor fin.
    Type: Application
    Filed: May 14, 2012
    Publication date: November 14, 2013
    Inventors: Huilong Zhu, Wei He, Qingqing Liang, Haizhou Yin, Zhijiong Luo
  • Patent number: 8575654
    Abstract: A method of forming a strained semiconductor channel, comprising: forming a relaxed SiGe layer on a semiconductor substrate; forming a dielectric layer on the relaxed SiGe layer and forming a sacrificial gate on the dielectric layer, wherein the dielectric layer and the sacrificial gate form a sacrificial gate structure; depositing an interlayer dielectric layer, which is planarized to expose the sacrificial gate; etching to remove the sacrificial gate and the dielectric layer to form an opening; forming a semiconductor epitaxial layer by selective semiconductor epitaxial growth in the opening; depositing a high-K dielectric layer and a metal layer; and removing the high-K dielectric layer and metal layer covering the interlayer dielectric layer by planarizing the deposited metal layer and high-K dielectric layer to form a metal gate. A semiconductor device manufactured by this process is also provided.
    Type: Grant
    Filed: September 19, 2010
    Date of Patent: November 5, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20130285157
    Abstract: A semiconductor structure comprises: a first interlayer structure having a first dielectric layer and first contact vias; a second interlayer structure having a cap layer and second contact vias; and a third interlayer structure having a second dielectric layer and third contact vias. The first dielectric layer is flush with a gate stack or covers the gate stack, and the first contact vias penetrate through the first dielectric layer and are electrically connected with at least a portion of source/drain regions. The cap layer covers the first interlayer structure, and the second contact vias penetrate through the cap layer and are electrically connected with the first contact vias and the gate stack through a first liner. The second dielectric layer covers the second interlayer structure, and the third contact vias penetrate through the second dielectric layer and are electrically connected with the second contact vias through a second liner.
    Type: Application
    Filed: February 26, 2011
    Publication date: October 31, 2013
    Applicant: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Publication number: 20130276872
    Abstract: A solar cell unit comprising a strip plate which has a third surface and a fourth surface opposite to the third surface, wherein a third doping region and a fourth doping region are arranged on the third surface and the fourth surface respectively, and a first doping region and a second doping region are arranged on side surfaces adjacent to the third surface and the fourth surface respectively; the types of impurities in the third doping region and the fourth doping region are contrary to one another; the surfaces of the first doping region and the second doping region have uniform doping type. Accordingly, the present invention further provides a method for manufacturing a solar cell unit.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 24, 2013
    Applicant: SUNOVEL SUZHOU TECHNOLOGIES LTD.
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Publication number: 20130277768
    Abstract: The present invention provides a semiconductor structure and a method for manufacturing the same. The method comprises the following steps: providing a substrate and forming a sacrificial gate, sidewall spacers and source/drain regions located on both sides of the sacrificial gate; forming an interlayer dielectric layer that covers the device; removing the sacrificial gate to form a cavity within the sidewall spacers; forming first oxygen absorbing layers in the cavity; forming a second oxygen absorbing layer in the remaining of the space of the cavity; and performing an annealing step to make the surface of the substrate form an interfacial layer. The present invention further provides a semiconductor structure. By forming a symmetrical interfacial layer in a channel region, the present invention has reduced processing difficulty while effectively mitigating short-channel effects and preserving carrier mobility.
    Type: Application
    Filed: December 1, 2011
    Publication date: October 24, 2013
    Inventors: Haizhou Yin, Weize Yu
  • Patent number: 8564029
    Abstract: The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a channel region under the gate dielectric layer; and a source region and a drain region located in the semiconductor substrate and on respective sides of the channel region, wherein at least one of the source and drain regions comprises a set of dislocations that are adjacent to the channel region and arranged in the direction perpendicular to a top surface of the semiconductor substrate, and the set of dislocations comprises at least two dislocations.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: October 22, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijong Luo
  • Patent number: 8557652
    Abstract: Semiconductor structures including a high k gate dielectric material that has at least one surface threshold voltage adjusting region located within 3 nm or less from an upper surface of the high k gate dielectric are provided. The at least one surface threshold voltage adjusting region is formed by a cluster beam implant step in which at least one threshold voltage adjusting impurity is formed directly within the high k gate dielectric or driven in from an overlying threshold voltage adjusting material which is subsequently removed from the structure following the cluster beam implant step.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Dae-Gyu Park, Haizhou Yin
  • Publication number: 20130263908
    Abstract: A solar cell structure is disclosed, which includes a solar cell array, including multiple solar cells arranged in parallel, wherein each solar cell includes a first semiconductor layer, a second semiconductor layer under the first semiconductor layer, top electrodes and bottom electrodes formed on surfaces of the first and second semiconductor layers, respectively; a top wire group on top of the solar cell array wherein each wire connects each of the multiple solar cells; a bottom wire group under the solar cell array wherein each wire connects each of the multiple solar cells and is placed away from the wires of the top wire group; and conductive adhesive on top of the top electrodes and on top of the bottom electrodes, being sandwiched between the top wire group and the solar cell array as well as between the bottom wire group and the solar cell array.
    Type: Application
    Filed: April 8, 2013
    Publication date: October 10, 2013
    Applicant: Sunovel Suzhou Technologies Ltd.
    Inventors: HUILONG ZHU, ZHIJIONG LUO, HAIZHOU YIN
  • Patent number: 8552504
    Abstract: The present invention provides a semiconductor device, which is formed on a semiconductor substrate, comprising a gate stack, a channel region, and source/drain regions, wherein the gate stack is on the channel region, the channel region is in the semiconductor substrate, the source/drain regions are embedded in the semiconductor substrate, and each of the source/drain regions comprises a sidewall and a bottom, a second semiconductor layer being sandwiched between the channel region and a portion of the sidewall distant from the bottom, a first semiconductor layer being sandwiched between the semiconductor substrate and at least a portion of the bottom distant from the sidewall, and an insulating layer being sandwiched between the semiconductor substrate and the other portions of the bottom and/or the other portions of the sidewall. The present invention also provides a method for forming the semiconductor device.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: October 8, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu
  • Publication number: 20130256845
    Abstract: The present invention discloses a semiconductor device, which comprises: a substrate, and a shallow trench isolation in the substrate, characterized in that, the semiconductor device further comprises a stress release layer between the substrate and the shallow trench isolation. In the semiconductor device and the method for manufacturing the same according to the present invention, the stresses accumulated during the formation of the STI can be released by interposing the stress release layer made of a softer material between the substrate and the STI, thereby reducing the leakage current of the substrate of the device and improving the device reliability.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 3, 2013
    Inventors: Haizhou Yin, Wei Jiang
  • Publication number: 20130260532
    Abstract: The present invention discloses a method for manufacturing a semiconductor device, comprising: forming a shallow trench in a substrate; forming a shallow trench filling layer in the shallow trench; forming a cap layer on the shallow trench filling layer; and implanting ions into the shallow trench filling layer and performing an annealing to form a shallow trench isolation. In the method for manufacturing the semiconductor device according to the present invention, an insulating material is formed by implanting ions into the filling material in the shallow trench, and a compressive stress is applied to the active region of the substrate due to the volume expansion of the filling material, so that the carrier mobility in the channel regions to be formed later can be increased and the device performance can be improved.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 3, 2013
    Inventors: Haizhou Yin, Wei Jiang
  • Publication number: 20130256810
    Abstract: The present invention discloses a semiconductor device, which comprises: a first epitaxial layer on a substrate; a second epitaxial layer on the first epitaxial layer, wherein a MOSFET is formed in an active region of the second epitaxial layer; and an inverted-T shaped STI formed in the first epitaxial layer and the second epitaxial layer and surrounding the active region. In the semiconductor device and the method for manufacturing the same according to the present invention, the double epitaxial layers are selectively etched to form an inverted-T shaped STI, which effectively reduces the leakage current of the device without reducing the area of the active region, thereby improving the device reliability.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 3, 2013
    Inventors: Haizhou Yin, Wei Jiang
  • Patent number: 8546241
    Abstract: A semiconductor device with stress trench isolation and a method for forming the same are provided. The method includes: providing a silicon substrate; forming first trenches and second trenches on the silicon substrate, wherein an extension direction of the first trenches is perpendicular to that of the second trenches; forming a first dielectric layer in the first trenches and forming a second dielectric layer in the second trenches; and forming a gate stack on a portion of the silicon substrate surrounded by the first trenches and the second trenches, wherein a channel length direction under the gate stack is parallel to the extension direction of the first trenches, indices of crystal plane of the silicon substrate are {100}, and the extension direction of the first trenches is along the crystal orientation <110>. The embodiments of the present invention can improve response speed and performance of the devices.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 1, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Zhijiong Luo, Huilong Zhu
  • Patent number: 8546910
    Abstract: The present invention provides a semiconductor structure, which comprises a substrate, a semiconductor base, a cavity, a gate stack, sidewall spacers, source/drain regions and a contact layer; wherein, the gate stack is located on the semiconductor base, the sidewall spacers are located on sidewalls of the gate stack, the source/drain regions are embedded within the semiconductor base and located on both sides of the gate stack, the cavity is embedded within the substrate, and the semiconductor base is suspended over the cavity, the thickness in the middle portion of the semiconductor base is greater than the thicknesses at both ends of the semiconductor base in a direction along the gate length, and both ends of the semiconductor base are connected with the substrate in a direction along the gate width; the contact layer covers exposed surfaces of the source/drain regions.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: October 1, 2013
    Assignees: Institute of Microelectronics, Chinese Academy of Sciences, Beijing NMC Co., Ltd.
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo