Patents by Inventor Han Henry Sun

Han Henry Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210111802
    Abstract: Consistent with the present disclosure a network is provided that includes a primary node and a plurality of secondary nodes. The primary node, as well as each of the secondary nodes, includes a laser that is “shared” between the transmit and receive sections. That is, light output from the laser is used for transmission as well as for coherent detection. In the coherent receiver, the frequency of the primary node laser is detected and, based on such detected frequency, the frequency of the secondary node laser is adjusted to detect the received information or data. Such frequency detection also serves to adjust the transmitted signal frequency, because the laser is shared between the transmit and receive portions in each secondary receiver. Light output from the primary node laser, which is also shared between transmit and receive portions in the primary node, is thus also set to a frequency that permits detection of each of the incoming optical signals by way of coherent detection.
    Type: Application
    Filed: May 11, 2020
    Publication date: April 15, 2021
    Inventors: John D. McNicol, Han Henry Sun, Kuang-Tsan Wu
  • Publication number: 20210111803
    Abstract: Consistent with the present disclosure a network is provided that includes a primary node and a plurality of secondary nodes. The primary node, as well as each of the secondary nodes, includes a laser that is “shared” between the transmit and receive sections. That is, light output from the laser is used for transmission as well as for coherent detection. In the coherent receiver, the frequency of the primary node laser is detected and, based on such detected frequency, the frequency of the secondary node laser is adjusted to detect the received information or data. Such frequency detection also serves to adjust the transmitted signal frequency, because the laser is shared between the transmit and receive portions in each secondary receiver. Light output from the primary node laser, which is also shared between transmit and receive portions in the primary node, is thus also set to a frequency that permits detection of each of the incoming optical signals by way of coherent detection.
    Type: Application
    Filed: May 11, 2020
    Publication date: April 15, 2021
    Inventors: John D. McNicol, Han Henry Sun, Kuang-Tsan Wu
  • Patent number: 10911150
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for clock recovery in subcarrier based coherent optical systems. In one aspect, an apparatus includes a plurality of phase detectors configured to generate a plurality of phase detection outputs by detecting a plurality of digital signals associated with a plurality of frequency bands, each of the plurality of phase detection outputs being associated with a respective one of the plurality of frequency bands, alignment circuitry coupled to the plurality of phase detectors and configured to align phases of the plurality of phase detection outputs to be substantially same, and averaging circuitry coupled to the alignment circuitry and configured to generate a particular output based on the plurality of phase detection outputs with the aligned phases. The plurality of digital signals is adjusted based on the particular output.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: February 2, 2021
    Assignee: Infinera Corporation
    Inventors: Mohsen Nader Tehrani, Han Henry Sun, David Krause
  • Publication number: 20200366376
    Abstract: Optical network systems are disclosed, including a system comprising a transmitter including a digital signal processor operable to receive a plurality of independent data streams and output a plurality of digital signals based on the plurality of independent data streams, digital-to-analog circuitry operable to supply a plurality of analog signals based on the plurality of digital signals, a laser operable to supply an optical signal, a modulator operable to receive the optical signal and supply a modulated optical signal based on the plurality of analog signals, including a plurality of optical subcarriers, each of which being associated with a corresponding one of the plurality of independent data streams, a first one of the plurality of optical subcarriers having a first spectral width and a second one of the plurality of optical subcarriers having a second spectral width different than the first spectral width; and a first and a second receiver.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven Joseph Hand, Han Henry Sun
  • Publication number: 20200313773
    Abstract: Probabilistic constellation shaping (PCS) is applied to a desired probability distribution over the 2-D constellation points. Constellation points are partitioned into multiple disjoint sets in which all the constellation points within a subset have the same energy level (i.e., amplitude) or distance from the origin on the complex plane. Each of the sets may be further subdivided into smaller disjoint sets of constellation points to facilitate labeling of the constellation points. The sets may be indexed from 0 to the total number of disjoint sets to form an index set. The desired distribution may then be applied over the index set either using a distribution matcher (DM) or using a lookup table. The desired distribution may be generated before forward error correction (FEC) encoding that preserves the generated amplitude distribution through FEC encoding of data bits.
    Type: Application
    Filed: March 14, 2019
    Publication date: October 1, 2020
    Inventors: Mehdi Torbatian, Han Henry Sun, Kuang-Tsan Wu
  • Publication number: 20200177282
    Abstract: Consistent with the present disclosure, an optical communication system is provided in which data is carried over optical signals including subcarriers. The subcarriers may be modulated with the standard modulation formats noted above, but the modulation formats are selectively assigned to the subcarriers, such that some subcarriers are modulated with different standard modulation formats than others. As used herein, a “standard modulation format” is one of BPSK, and n-QAM, where n is an integer greater than one. Such n-QAM modulation formats include of 3-QAM, 4-QAM (QPSK), 8-QAM, 16-QAM, 64-QAM, 128-QAM, and 256-QAM. By selecting the number of subcarriers and the types of modulation formats employed, an optical signal with an effective SE that is between that of the standard modulation formats can be generated for transmission over a distances that more closely matches the link distance.
    Type: Application
    Filed: August 5, 2019
    Publication date: June 4, 2020
    Inventors: Ahmed AWADALLA, Abdullah KARAR, Han Henry SUN, Kuang-Tsan WU
  • Patent number: 10601520
    Abstract: Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor that receives data; circuitry that generate a plurality of electrical signals based on the data; a plurality of filters, each of which receiving a corresponding one of the plurality of electrical signals, a plurality of roll-off factors being associated with a respective one of the plurality of filters; a plurality of DACs that receive outputs from the digital signal processor, the outputs being indicative of outputs from the plurality of filters; a laser that supplies light; and a modulator that receives the light and outputs from the DACs, and supplies a plurality of optical subcarriers based on the outputs, such that one of the optical subcarriers has a frequency bandwidth that is wider than remaining ones of the optical subcarriers, said one of the optical subcarriers carrying information for clock recovery.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 24, 2020
    Assignee: Infinera Corporation
    Inventors: Han Henry Sun, Kuang-Tsan Wu, Steven Joseph Hand, Jeffrey T. Rahn
  • Publication number: 20190393964
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for clock recovery in subcarrier based coherent optical systems. In one aspect, an apparatus includes a plurality of phase detectors configured to generate a plurality of phase detection outputs by detecting a plurality of digital signals associated with a plurality of frequency bands, each of the plurality of phase detection outputs being associated with a respective one of the plurality of frequency bands, alignment circuitry coupled to the plurality of phase detectors and configured to align phases of the plurality of phase detection outputs to be substantially same, and averaging circuitry coupled to the alignment circuitry and configured to generate a particular output based on the plurality of phase detection outputs with the aligned phases. The plurality of digital signals is adjusted based on the particular output.
    Type: Application
    Filed: June 25, 2019
    Publication date: December 26, 2019
    Inventors: Mohsen Nader Tehrani, Han Henry Sun, David Krause
  • Publication number: 20190253153
    Abstract: Consistent with the present disclosure, a transmitter is provided that include a modulator and a laser. The modulator is driven based on outputs from a digital signal processor (DSP), such that the modulator outputs a modulated optical signal including a plurality of subcarriers. Each subcarrier includes an x pol component and a y pol component, but certain subcarriers may have an effective x pol and y pol rotations compared to other subcarriers. The amount of rotation may be determined by a polarization rotation circuit that supplies inputs to the DSP (alternatively the polarization rotation circuit may be part of the DSP). Accordingly, regardless of the orientation of PDL in an optical link, certain subcarriers may have lower overall Q (a parameter related to the signal-to-noise ratio (SNR)) while others may have a higher Q, such that the average Q over all the subcarriers in a modulated optical signal is higher than if each subcarrier has the same x pol and y pol orientations.
    Type: Application
    Filed: October 11, 2018
    Publication date: August 15, 2019
    Inventors: Han Henry Sun, David James Krause, Kuang-Tsan Wu
  • Publication number: 20190245627
    Abstract: Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor receiving a plurality of independent data streams, and supplying a plurality of digital subcarrier outputs, based on the plurality of independent data streams, and configurable to vary the frequency spacing between two or more of the plurality of digital subcarrier outputs; the transmitter configured to output a modulated optical signal including a plurality of optical subcarriers based on the digital subcarrier outputs wherein based on first ones of the plurality of digital outputs, the first one of the plurality of subcarriers is spectrally spaced from the second one of the plurality subcarriers by a first gap, and based on second ones of the plurality of digital outputs, the first one of the plurality of subcarriers is spectrally spaced from the second one of the plurality of subcarriers by a second gap different than the first.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 8, 2019
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven Joseph Hand, Han Henry Sun
  • Publication number: 20190245643
    Abstract: Optical network systems and components are disclosed, including a transmitter comprising a digital signal processor that receives data; circuitry that generate a plurality of electrical signals based on the data; a plurality of filters, each of which receiving a corresponding one of the plurality of electrical signals, a plurality of roll-off factors being associated with a respective one of the plurality of filters; a plurality of DACs that receive outputs from the digital signal processor, the outputs being indicative of outputs from the plurality of filters; a laser that supplies light; and a modulator that receives the light and outputs from the DACs, and supplies a plurality of optical subcarriers based on the outputs, such that one of the optical subcarriers has a frequency bandwidth that is wider than remaining ones of the optical subcarriers, said one of the optical subcarriers carrying information for clock recovery.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 8, 2019
    Inventors: Han Henry Sun, Kuang-Tsan Wu, Steven Joseph Hand, Jeffrey T. Rahn
  • Publication number: 20190245626
    Abstract: Optical network systems and components are disclosed including a transmitter comprising a digital signal processor receiving a plurality of independent data streams, the digital signal processor supplying outputs based on the plurality of independent data streams, the digital signal processor comprising a plurality of pulse shape filters corresponding to the plurality of independent data streams, the plurality of pulse shape filters configured to filter the independent data streams to produce a first subcarrier having a first frequency bandwidth and a second subcarrier having a second frequency bandwidth different than the first frequency bandwidth for the outputs.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 8, 2019
    Inventors: Jeffrey T. Rahn, Kuang-Tsan Wu, Steven Joseph Hand, Han Henry Sun
  • Patent number: 10374721
    Abstract: Consistent with the present disclosure, an optical communication system is provided in which data is carried over optical signals including subcarriers. The subcarriers may be modulated with the standard modulation formats noted above, but the modulation formats are selectively assigned to the subcarriers, such that some subcarriers are modulated with different standard modulation formats than others. As used herein, a “standard modulation format” is one of BPSK, and n-QAM, where n is an integer greater than one. Such n-QAM modulation formats include of 3-QAM, 4-QAM (QPSK), 8-QAM, 16-QAM, 64-QAM, 128-QAM, and 256-QAM. By selecting the number of subcarriers and the types of modulation formats employed, an optical signal with an effective SE that is between that of the standard modulation formats can be generated for transmission over a distances that more closely matches the link distance.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: August 6, 2019
    Assignee: Infinera Corporation
    Inventors: Ahmed Awadalla, Abdullah Karar, Han Henry Sun, Kuang-Tsan Wu
  • Patent number: 10361891
    Abstract: Apparatus and methods may provide improved equalizer performance, e.g., for optical-fiber-based communication systems. A least-mean-square (LMS) equalizer may include a decision feedback path containing feedback carrier recovery (FBCR), which may have low latency, and which may thus enable high-speed tap updating in the equalizer. Feed-forward carrier recovery (FFCR) may be applied, in parallel with the FBCR, to provide equalizer output by compensating, e.g., for phase noise, with improved carrier recovery/compensation, versus using FBCR to generate the output.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: July 23, 2019
    Assignee: Infinera Corporation
    Inventors: Ahmed Awadalla, Han Henry Sun, Kuang-Tsan Wu
  • Publication number: 20190149390
    Abstract: Consistent with the present disclosure, an encoder circuit is provided at a transmit side of an optical fiber link that maps an input sequence of bits of fixed length k a sequence of symbols of a codeword of length n, such that the symbols of the codeword define a predetermined transmission probability distribution. Preferably, each symbol of the codeword is generated during a corresponding clock cycle, such that after n clock cycles, a complete codeword corresponding to the input bit sequence is output. On a receive end of the link, a decoder is provided that outputs the k-bit sequence every n clock cycles. Accordingly, buffers need not be provided at the output of the encoder and the input of the decoder, such that processing of the input sequence, codewords, and output sequence may be achieved efficiently without large buffers and complicated circuitry. Moreover, the input sequence, with any binary alphabet may be matched to a desired output distribution with any arbitrary alphabet.
    Type: Application
    Filed: October 4, 2018
    Publication date: May 16, 2019
    Inventors: Mehdi Torbatian, Deyuan Chan, Han Henry Sun, Sandy Thomson, Kuang-Tsan Wu
  • Publication number: 20190149242
    Abstract: Consistent with the present disclosure, an encoder circuit is provided at a transmit side of an optical fiber link that maps an input sequence of bits of fixed length k a sequence of symbols of a codeword of length n, such that the symbols of the codeword define a predetermined transmission probability distribution. Preferably, each symbol of the codeword is generated during a corresponding clock cycle, such that after n clock cycles, a complete codeword corresponding to the input bit sequence is output. On a receive end of the link, a decoder is provided that outputs the k-bit sequence every n clock cycles. Accordingly, buffers need not be provided at the output of the encoder and the input of the decoder, such that processing of the input sequence, codewords, and output sequence may be achieved efficiently without large buffers and complicated circuitry. Moreover, the input sequence, with any binary alphabet may be matched to a desired output distribution with any arbitrary alphabet.
    Type: Application
    Filed: October 4, 2018
    Publication date: May 16, 2019
    Inventors: Mehdi Torbatian, Deyuan Chan, Han Henry Sun, Sandy Thomson, Kuang-Tsan Wu
  • Publication number: 20190149387
    Abstract: Consistent with the present disclosure, an encoder circuit is provided at a transmit side of an optical fiber link that maps an input sequence of bits of fixed length k a sequence of symbols of a codeword of length n, such that the symbols of the codeword define a predetermined transmission probability distribution. Preferably, each symbol of the codeword is generated during a corresponding clock cycle, such that after n clock cycles, a complete codeword corresponding to the input bit sequence is output. On a receive end of the link, a decoder is provided that outputs the k-bit sequence every n clock cycles. Accordingly, buffers need not be provided at the output of the encoder and the input of the decoder, such that processing of the input sequence, codewords, and output sequence may be achieved efficiently without large buffers and complicated circuitry. Moreover, the input sequence, with any binary alphabet may be matched to a desired output distribution with any arbitrary alphabet.
    Type: Application
    Filed: October 4, 2018
    Publication date: May 16, 2019
    Inventors: Mehdi Torbatian, Deyuan Chan, Han Henry Sun, Sandy Thomson, Kuang-Tsan Wu
  • Publication number: 20190149389
    Abstract: Consistent with the present disclosure, an encoder circuit is provided at a transmit side of an optical fiber link that maps an input sequence of bits of fixed length k a sequence of symbols of a codeword of length n, such that the symbols of the codeword define a predetermined transmission probability distribution. Preferably, each symbol of the codeword is generated during a corresponding clock cycle, such that after n clock cycles, a complete codeword corresponding to the input bit sequence is output. On a receive end of the link, a decoder is provided that outputs the k-bit sequence every n clock cycles. Accordingly, buffers need not be provided at the output of the encoder and the input of the decoder, such that processing of the input sequence, codewords, and output sequence may be achieved efficiently without large buffers and complicated circuitry. Moreover, the input sequence, with any binary alphabet may be matched to a desired output distribution with any arbitrary alphabet.
    Type: Application
    Filed: October 4, 2018
    Publication date: May 16, 2019
    Inventors: Mehdi Torbatian, Deyuan Chan, Han Henry Sun, Sandy Thomson, Kuang-Tsan Wu
  • Patent number: 10084482
    Abstract: Various apparatus and methods may use iterative de-mapping/decoding to on received symbol estimates corresponding to interleaved coded modulation (ICM) using low-density parity check convolutional coding (LPDC-CC). The iterative de-mapping/decoding, may take the form of a multi-stage feed-forward arrangement that may include multiple identically designed stages, and the stages may use parallelism to increase speed and efficiency.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: September 25, 2018
    Assignee: Infinera Corporation
    Inventors: Abdullah Karar, Han Henry Sun, Kuang-Tsan Wu
  • Publication number: 20180183631
    Abstract: Apparatus and methods may provide improved equalizer performance, e.g., for optical-fiber-based communication systems. A least-mean-square (LMS) equalizer may include a decision feedback path containing feedback carrier recovery (FBCR), which may have low latency, and which may thus enable high-speed tap updating in the equalizer. Feed-forward carrier recovery (FFCR) may be applied, in parallel with the FBCR, to provide equalizer output by compensating, e.g., for phase noise, with improved carrier recovery/compensation, versus using FBCR to generate the output.
    Type: Application
    Filed: December 28, 2016
    Publication date: June 28, 2018
    Inventors: Ahmed AWADALLA, Han Henry SUN, Kuang-Tsan WU