Patents by Inventor Han-Wei Wu

Han-Wei Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964881
    Abstract: A method for making iridium oxide nanoparticles includes dissolving an iridium salt to obtain a salt-containing solution, mixing a complexing agent with the salt-containing solution to obtain a blend solution, and adding an oxidating agent to the blend solution to obtain a product mixture. A molar ratio of a complexing compound of the complexing agent to the iridium salt is controlled in a predetermined range so as to permit the product mixture to include iridium oxide nanoparticles.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 23, 2024
    Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITY
    Inventors: Pu-Wei Wu, Yi-Chieh Hsieh, Han-Yi Wang, Kuang-Chih Tso, Tzu-Ying Chan, Chung-Kai Chang, Chi-Shih Chen, Yu-Ting Cheng
  • Patent number: 11961738
    Abstract: In a method of forming a pattern, a first pattern is formed over an underlying layer, the first pattern including main patterns and a lateral protrusion having a thickness of less than 25% of a thickness of the main patterns, a hard mask layer is formed over the first pattern, a planarization operation is performed to expose the first pattern without exposing the lateral protrusion, a hard mask pattern is formed by removing the first pattern while the lateral protrusion being covered by the hard mask layer, and the underlying layer is patterned using the hard mask pattern as an etching mask.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Ta Chen, Hua-Tai Lin, Han-Wei Wu, Jiann-Yuan Huang
  • Publication number: 20240105518
    Abstract: A first group of semiconductor fins are over a first region of a substrate, the substrate includes a first stepped profile between two of the first group of semiconductor fins, and the first stepped profile comprises a first lower step, two first upper steps, and two first step rises extending from opposite sides of the first lower step to the first upper steps. A second group of semiconductor fins are over a second region of the substrate, the substrate includes a second stepped profile between two of the second group of semiconductor fins, and the second stepped profile comprises a second lower step, two second upper steps, and two second step rises extending from opposite sides of the second lower step to the second upper steps, in which the second upper steps are wider than the first upper steps in the cross-sectional view.
    Type: Application
    Filed: January 11, 2023
    Publication date: March 28, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Ta CHEN, Han-Wei WU, Yuan-Hsiang LUNG, Hua-Tai LIN
  • Publication number: 20240079758
    Abstract: An electronic device includes a metal back cover, a metal frame, and a first, second, third, and fourth radiators. The metal frame includes a discrete part and two connection parts. The connection parts are located by two sides of the discrete part, separated from the discrete part, and connected to the metal back cover. A U-shaped slot is formed between the discrete part and the metal back cover and between the discrete part and the connection parts. The first radiator is separated from the discrete part and includes a feed end. The second, third, and fourth radiators are connected to the discrete part and the metal back cover. The third radiator is located between the first and second radiators. The first radiator is located between the third and fourth radiators. The discrete part and the first, second, third, and fourth radiators form an antenna module together.
    Type: Application
    Filed: August 2, 2023
    Publication date: March 7, 2024
    Applicant: PEGATRON CORPORATION
    Inventors: Chien-Yi Wu, Chao-Hsu Wu, Chih-Wei Liao, Hau Yuen Tan, Shih-Keng Huang, Wen-Hgin Chuang, Lin-Hsu Chiang, Chang-Hua Wu, Han-Wei Wang, Chun-Jung Hu
  • Publication number: 20240030073
    Abstract: In a method of patterning an integrated circuit, test layer thickness variation data is received when a test layer with a known thickness disposed over a test substrate undergoes tilted angle plasma etching. Overlay offset data per substrate locations caused by the tilted angle plasma etching is determined. The overlay offset data is determined based on the received thickness variation data. The overlay offset data is associated with an overlay between first circuit patterns of a first layer on the semiconductor substrate and corresponding second circuit patterns of a second layer disposed over the first layer on the substrate. A location of the substrate is adjusted based on the overlay offset data during a lithography operation to pattern a resist layer over the second layer. The second layer is patterned based on the projected layout patterns of the reticle and using the tilted angle plasma etching.
    Type: Application
    Filed: July 19, 2023
    Publication date: January 25, 2024
    Inventors: Wei-De HO, Pei-Sheng Tang, Han-Wei Wu, Yuan-Hsiang Lung, Hua-Tai Lin, Chen-Jung Wang
  • Publication number: 20240023339
    Abstract: A method of forming a memory structure includes the following steps. A CMOS circuitry is formed over a semiconductor substrate. A bit line array is formed to be electrically connected to the CMOS circuitry. A memory array is formed over the bit line array. The memory array is formed by forming a word line stack, and forming first and second sets of stacked memory cells. The word line stack is formed on the bit line array and has a first side surface and a second side surface. The first sets of stacked memory cells are formed along the first side surface. The second sets of stacked memory cells are formed along the second side surface, wherein the second sets of stacked memory cells are staggered from the first sets of stacked memory cells. A source line array is formed over the memory array and electrically connected to the CMOS circuitry.
    Type: Application
    Filed: August 2, 2023
    Publication date: January 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Hsuan Chien, Meng-Han Lin, Han-Wei Wu, Feng-Cheng Yang
  • Publication number: 20230402277
    Abstract: A method includes depositing a dielectric layer over a semiconductor substrate; forming a first photoresist layer over the dielectric layer; patterning the first photoresist layer to form through holes, such that a first portion of the first photoresist layer between a first one and a second one of the through holes has a less height than a second portion of the first photoresist layer between the first one and a third one of the through holes; forming a spacer on the first portion of the first photoresist layer; performing an etching process on the dielectric layer to form via holes while the spacer remains covering the first portion of the first photoresist layer; forming a plurality of metal vias in the via holes.
    Type: Application
    Filed: June 12, 2022
    Publication date: December 14, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chin-Ta CHEN, Han-Wei WU, Yuan-Hsiang LUNG, Hua-Tai LIN
  • Patent number: 11844224
    Abstract: A method of forming a memory structure includes the following steps. A CMOS circuitry is formed over a semiconductor substrate. A bit line array is formed to be electrically connected to the CMOS circuitry. A memory array is formed over the bit line array. The memory array is formed by forming a word line stack, and forming first and second sets of stacked memory cells. The word line stack is formed on the bit line array and has a first side surface and a second side surface. The first sets of stacked memory cells are formed along the first side surface. The second sets of stacked memory cells are formed along the second side surface, wherein the second sets of stacked memory cells are staggered from the first sets of stacked memory cells. A source line array is formed over the memory array and electrically connected to the CMOS circuitry.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: December 12, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Hsuan Chien, Meng-Han Lin, Han-Wei Wu, Feng-Cheng Yang
  • Patent number: 11830936
    Abstract: A structure and a method of forming are provided. A first work function layer is formed over a first fin and terminates closer to the first fin than an adjacent second fin. A second work function layer is formed over the first work function layer and terminates closer to the second fin than the adjacent second fin. A third work function layer is formed over the first work function layer and the second fin. A conductive layer is formed over the third work function layer.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jin-Dah Chen, Stan Chen, Han-Wei Wu
  • Patent number: 11804410
    Abstract: A method for evaluation of thin film non-uniform stress using high order wafer warpage, the steps including measuring a net wafer warpage across a wafer area due to thin film deposition, fitting a two dimensional low-order polynomial to the wafer warpage measurements and subtracting the low-order polynomial from the net wafer warpage across the wafer area.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: October 31, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-De Ho, Han-Wei Wu, Pei-Sheng Tang, Meng-Jung Lee, Hua-Tai Lin, Szu-Ping Tung, Lan-Hsin Chiang
  • Patent number: 11749570
    Abstract: In a method of patterning an integrated circuit, test layer thickness variation data is received when a test layer with a known thickness disposed over a test substrate undergoes tilted angle plasma etching. Overlay offset data per substrate locations caused by the tilted angle plasma etching is determined. The overlay offset data is determined based on the received thickness variation data. The overlay offset data is associated with an overlay between first circuit patterns of a first layer on the semiconductor substrate and corresponding second circuit patterns of a second layer disposed over the first layer on the substrate. A location of the substrate is adjusted based on the overlay offset data during a lithography operation to pattern a resist layer over the second layer. The second layer is patterned based on the projected layout patterns of the reticle and using the tilted angle plasma etching.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: September 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-De Ho, Pei-Sheng Tang, Han-Wei Wu, Yuan-Hsiang Lung, Hua-Tai Lin, Chen-Jung Wang
  • Publication number: 20230139799
    Abstract: In pattern formation method, a photomask is loaded into a lithography apparatus, an exposure light is applied to a photo resist layer formed over a substrate through or via the photomask, and the photo resist layer is developed. The photomask includes a plurality of octagonal shape patterns periodically arranged in a first direction and a second direction crossing the first direction. A width Lx of horizontal sides extending in the first direction of each of the plurality octagonal shape patterns is different from a width Ly of vertical sides extending in the second direction of each of the plurality octagonal shape patterns.
    Type: Application
    Filed: March 30, 2022
    Publication date: May 4, 2023
    Inventors: Wei-De HO, Han-Wei WU, Yuan-Hsiang LUNG, Hua-Tai LIN
  • Publication number: 20230062426
    Abstract: In a method of patterning an integrated circuit, test layer thickness variation data is received when a test layer with a known thickness disposed over a test substrate undergoes tilted angle plasma etching. Overlay offset data per substrate locations caused by the tilted angle plasma etching is determined. The overlay offset data is determined based on the received thickness variation data. The overlay offset data is associated with an overlay between first circuit patterns of a first layer on the semiconductor substrate and corresponding second circuit patterns of a second layer disposed over the first layer on the substrate. A location of the substrate is adjusted based on the overlay offset data during a lithography operation to pattern a resist layer over the second layer. The second layer is patterned based on the projected layout patterns of the reticle and using the tilted angle plasma etching.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Inventors: Wei-De HO, Pei-Sheng TANG, Han-Wei WU, Yuan-Hsiang LUNG, Hua-Tai LIN, Chen-Jung WANG
  • Publication number: 20230067049
    Abstract: A method for manufacturing a memory device includes forming a dielectric layer over a wafer, wherein the wafer has a device region and a peripheral region adjacent to the device region. A bottom via opening is formed in the dielectric layer and over the device region of the wafer and a trench is fanned in the dielectric layer and over the peripheral region of the wafer. A bottom electrode via is formed in the bottom via opening. A bottom electrode layer is conformally formed over the bottom electrode via and lining a sidewall and a bottom of the trench. A memory layer and a top electrode are formed over the bottom electrode layer.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pei-Sheng TANG, Wei-De HO, Han-Wei WU, Yuan-Hsiang LUNG, Hua-Tai LIN
  • Publication number: 20230049896
    Abstract: A method of manufacturing a semiconductor device includes forming an underlying structure in a first area and a second area over a substrate. A first layer is formed over the underlying structure. The first layer is removed from the second area while protecting the first layer in the first area. A second layer is formed over the first area and the second area, wherein the second layer has a smaller light transparency than the first layer. The second layer is removed from the first area, and first resist pattern is formed over the first layer in the first area and a second resist pattern over the second layer in the second area.
    Type: Application
    Filed: April 5, 2022
    Publication date: February 16, 2023
    Inventors: Jin-Dah CHEN, Han-Wei WU, Yuan-Hsiang LUNG, Hua-Tai LIN
  • Publication number: 20220359313
    Abstract: A method for evaluation of thin film non-uniform stress using high order wafer warpage, the steps including measuring a net wafer warpage across a wafer area due to thin film deposition, fitting a two dimensional low-order polynomial to the wafer warpage measurements and subtracting the low-order polynomial from the net wafer warpage across the wafer area.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 10, 2022
    Inventors: Wei-De HO, Han-Wei WU, Pei-Sheng TANG, Meng-Jung LEE, Hua-Tai LIN, Szu-Ping TUNG, Lan-Hsin CHIANG
  • Publication number: 20220262624
    Abstract: In a method of forming a pattern, a first pattern is formed over an underlying layer, the first pattern including main patterns and a lateral protrusion having a thickness of less than 25% of a thickness of the main patterns, a hard mask layer is formed over the first pattern, a planarization operation is performed to expose the first pattern without exposing the lateral protrusion, a hard mask pattern is formed by removing the first pattern while the lateral protrusion being covered by the hard mask layer, and the underlying layer is patterned using the hard mask pattern as an etching mask.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 18, 2022
    Inventors: Jin-Dah CHEN, Hua-Tai LIN, Han-Wei WU, Jiann-Yuan HUANG
  • Publication number: 20220223622
    Abstract: A method of forming a memory structure includes the following steps. A CMOS circuitry is formed over a semiconductor substrate. A bit line array is formed to be electrically connected to the CMOS circuitry. A memory array is formed over the bit line array. The memory array is formed by forming a word line stack, and forming first and second sets of stacked memory cells. The word line stack is formed on the bit line array and has a first side surface and a second side surface. The first sets of stacked memory cells are formed along the first side surface. The second sets of stacked memory cells are formed along the second side surface, wherein the second sets of stacked memory cells are staggered from the first sets of stacked memory cells. A source line array is formed over the memory array and electrically connected to the CMOS circuitry.
    Type: Application
    Filed: April 26, 2021
    Publication date: July 14, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Hsuan Chien, Meng-Han Lin, Han-Wei Wu, Feng-Cheng Yang
  • Patent number: 11387105
    Abstract: First, second, and third trenches are formed in a layer over a substrate. The third trench is substantially wider than the first and second trenches. The first, second, and third trenches are partially filled with a first conductive material. A first anti-reflective material is coated over the first, second, and third trenches. The first anti-reflective material has a first surface topography variation. A first etch-back process is performed to partially remove the first anti-reflective material. Thereafter, a second anti-reflective material is coated over the first anti-reflective material. The second anti-reflective material has a second surface topography variation that is smaller than the first surface topography variation. A second etch-back process is performed to at least partially remove the second anti-reflective material in the first and second trenches. Thereafter, the first conductive material is partially removed in the first and second trenches.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jin-Dah Chen, Ming-Feng Shieh, Han-Wei Wu, Yu-Hsien Lin, Po-Chun Liu, Stan Chen
  • Publication number: 20220157973
    Abstract: A structure and a method of forming are provided. A first work function layer is formed over a first fin and terminates closer to the first fin than an adjacent second fin. A second work function layer is formed over the first work function layer and terminates closer to the second fin than the adjacent second fin. A third work function layer is formed over the first work function layer and the second fin. A conductive layer is formed over the third work function layer.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Inventors: Jin-Dah Chen, Stan Chen, Han-Wei Wu