Patents by Inventor Han Ye

Han Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9601528
    Abstract: The present invention provides a manufacturing method of an array substrate, comprising steps of: forming a gate and a gate line on a substrate; forming a gate insulating layer on the gate and the gate line; forming a pixel electrode on the gate insulating layer; and forming a first connecting via in a portion of the gate insulating layer in a non-display region and corresponding to the gate line, wherein the first connecting via is configured to connect a scanning signal trace to the gate line.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: March 21, 2017
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Pengju Zhang, Xiaojian Du, Bo Gao, Han Ye
  • Publication number: 20160358953
    Abstract: The present invention provides a manufacturing method of an array substrate, comprising steps of: forming a gate and a gate line on a substrate; forming a gate insulating layer on the gate and the gate line; forming a pixel electrode on the gate insulating layer; and forming a first connecting via in a portion of the gate insulating layer in a non-display region and corresponding to the gate line, wherein the first connecting via is configured to connect a scanning signal trace to the gate line.
    Type: Application
    Filed: April 20, 2016
    Publication date: December 8, 2016
    Inventors: Pengju ZHANG, Xiaojian DU, Bo GAO, Han YE
  • Publication number: 20160141420
    Abstract: A high-voltage FinFET device having LDMOS structure and a method for manufacturing the same are provided. The high-voltage FinFET device includes: at least one fin structure, a working gate, a shallow trench isolation structure, and a first dummy gate. The fin structure includes a first-type well region and a second-type well region adjacent to the first-type well region, and further includes a first part and a second part. A trench is disposed between the first part and the second part and disposed in the first-type well region. A drain doped layer is disposed on the first part which is disposed in the first-type well region, and a source doped layer is disposed on the second part which is disposed in the second-type well region. The working gate is disposed on the fin structure which is disposed in the first-type well region and in the second-type well region.
    Type: Application
    Filed: December 29, 2014
    Publication date: May 19, 2016
    Inventors: TAI-JU CHEN, YI-HAN YE, TE-CHIH CHEN
  • Publication number: 20150279957
    Abstract: A semiconductor structure and a manufacturing method for the same are disclosed. The semiconductor structure includes a first gate structure, a second gate structure and a second dielectric spacer. Each of the first gate structure and the second gate structure adjacent to each other includes a first dielectric spacer. The second dielectric spacer is on one of opposing sidewalls of the first gate structure and without being disposed on the dielectric spacer of the second gate structure.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Applicant: United Microelectronics Corp.
    Inventors: Yu-Ping Wang, Jyh-Shyang Jenq, Yu-Hsiang Lin, Hsuan-Hsu Chen, Chien-Hao Chen, Yi-Han Ye
  • Patent number: 9148511
    Abstract: A method of managing a call center that includes a plurality of agents may include receiving functional data associated with the plurality of call center agents over a time period, for each data curve, normalizing the data points to create a plurality of normalized functional data points, determining a variation associated with each normalized functional data point, determining one or more threshold values associated with each normalized functional data point, determining whether one or more of the normalized functional data points have a value that exceeds the associated threshold value, and identifying each of the normalized functional data points having a value that exceeds the associated threshold value as an outlier. The method may include identifying the call center agent associated with each curve that has an outlier and presenting information pertaining to one or more identified call center agents to a user.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: September 29, 2015
    Assignee: Xerox Corporation
    Inventors: Han Ye, Shi Zhao
  • Publication number: 20140343880
    Abstract: A method for deriving characteristic values of a MOS transistor is described. A set of ?k values is provided. A set of VBi values (i=1 to M, M?3) is provided. A set of RSDi,j (i=1 to M?1, j=i+1 to M) values each under a pair of VBi and VBj, or a set of Vtq—q,j (q is one of 1 to M, j is 1 to M excluding q) values under VBq is derived for each ?k, with an iteration method. The ?k value making the set of RSDi,j values or Vtq—q,j values closest to each other is determined as an accurate ?k value. The mean value of RSDi,j at the accurate ?k value is calculated as an accurate RSD value.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: United Microelectronics Corp.
    Inventors: Yi-Ting Wu, Cheng-Tung Huang, Tsung-Han Lee, Yi-Han Ye
  • Patent number: 8822297
    Abstract: Provided is a method of fabricating a MOS device including the following steps. At least one gate structure is formed on a substrate, wherein the gate structure includes a gate conductive layer and a hard mask layer disposed on the gate conductive layer. A first implant process is performed to form source and drain extension regions in the substrate, wherein the gate conductive layer is covered by the hard mask layer. A process is of removing the hard mask layer is performed to expose the surface of the gate conductive layer. A second implant process is performed to form pocket doped regions in the substrate, wherein the gate conductive layer is not covered by the hard mask layer.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: September 2, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Tsung-Han Lee, Cheng-Tung Huang, Yi-Han Ye
  • Publication number: 20140233720
    Abstract: A method of managing a call center that includes a plurality of agents may include receiving functional data associated with the plurality of call center agents over a time period, for each data curve, normalizing the data points to create a plurality of normalized functional data points, determining a variation associated with each normalized functional data point, determining one or more threshold values associated with each normalized functional data point, determining whether one or more of the normalized functional data points have a value that exceeds the associated threshold value, and identifying each of the normalized functional data points having a value that exceeds the associated threshold value as an outlier. The method may include identifying the call center agent associated with each curve that has an outlier and presenting information pertaining to one or more identified call center agents to a user.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Applicant: XEROX CORPORATION
    Inventors: Han Ye, Shi Zhao
  • Publication number: 20140211932
    Abstract: A system implements a method of assessing performance of a call center agent that includes identifying a set of the one-time caller calls that the agent has handled. A first issue resolution rate is determined for the calls in the set that were released by the customer, and a second issue resolution rate is determined for the calls in the set that were released by the call center agent. The method also includes determining a difference between the first issue resolution rate and the second issue resolution rate. The determined difference is used to generate a performance assessment for the call center agent.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Xerox Corporation
    Inventors: Shi Zhao, Han Ye
  • Publication number: 20140206170
    Abstract: Provided is a method of fabricating a MOS device including the following steps. At least one gate structure is formed on a substrate, wherein the gate structure includes a gate conductive layer and a hard mask layer disposed on the gate conductive layer. A first implant process is performed to form source and drain extension regions in the substrate, wherein the gate conductive layer is covered by the hard mask layer. A process is of removing the hard mask layer is performed to expose the surface of the gate conductive layer. A second implant process is performed to form pocket doped regions in the substrate, wherein the gate conductive layer is not covered by the hard mask layer.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Tsung-Han Lee, Cheng-Tung Huang, Yi-Han Ye
  • Patent number: 8787552
    Abstract: A system implements a method of assessing performance of a call center agent that includes identifying a set of the one-time caller calls that the agent has handled. A first issue resolution rate is determined for the calls in the set that were released by the customer, and a second issue resolution rate is determined for the calls in the set that were released by the call center agent. The method also includes determining a difference between the first issue resolution rate and the second issue resolution rate. The determined difference is used to generate a performance assessment for the call center agent.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: July 22, 2014
    Assignee: Xerox Corporation
    Inventors: Shi Zhao, Han Ye
  • Publication number: 20130171789
    Abstract: A method for manufacturing a semiconductor device includes providing a substrate having a first gate structure and a second gate structure formed thereon; blanketly forming a seal layer covering the first gate structure and the second gate structure on the substrate; performing a first ion implantation to form first light-doped drains (LDDs) in the substrate respectively at two sides of the first gate structure; and performing a second ion implantation to form second LDDs in the substrate respectively at two sides of the second gate structure; wherein at least one of the first ion implantation and the second ion implantation is performed to penetrate through the seal layer.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 4, 2013
    Inventors: Ling-Chun Chou, Shin-Chuan Huang, I-Chang Wang, Ching-Wen Hung, Buo-Chin Hsu, Yi-Han Ye