Patents by Inventor Hans-Jürgen Thees

Hans-Jürgen Thees has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130221478
    Abstract: Disclosed herein are various methods of forming isolation structures, such as trench isolation structures, for semiconductor devices using a spin-on glass material or a flowable oxide material. In one example, the method includes forming a trench in a semiconducting substrate, forming a lower isolation structure comprised of an insulating material in at least the trench, wherein the lower isolation structure has an upper surface that is below an upper surface of the substrate, and forming an upper isolation structure above the lower isolation structure, wherein a portion of the upper isolation structure is positioned within the trench.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 29, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Jorg Radecker, Hans-Juergen Thees, Peter Javorka
  • Publication number: 20130214392
    Abstract: Disclosed herein are various methods of forming stepped isolation structures for semiconductor devices using a spacer technique. In one example, the method includes forming a first trench in a semiconducting substrate, wherein the first trench has a bottom surface, a width and a depth, the depth of the first trench being less than a target final depth for a stepped trench isolation structure, performing an etching process through the first trench on an exposed portion of the bottom surface of the first trench to form a second trench in the substrate, wherein the second trench has a width and a depth, and wherein the width of the second trench is less than the width of the first trench, and forming the stepped isolation structure in the first and second trenches.
    Type: Application
    Filed: February 20, 2012
    Publication date: August 22, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Jorg Radecker, Hans-Juergen Thees, Peter Javorka
  • Publication number: 20130214381
    Abstract: Disclosed herein are various methods of forming isolation structures, such as trench isolation structures, for semiconductor devices. In one example, the method includes forming a trench in a semiconducting substrate, forming a lower isolation structure in the trench, wherein the lower isolation structure has an upper surface that is below an upper surface of the substrate, and forming an upper isolation structure above the lower isolation structure, wherein a portion of the upper isolation structure is positioned within the trench.
    Type: Application
    Filed: February 20, 2012
    Publication date: August 22, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Jorg Radecker, Hans-Juergen Thees, Peter Javorka
  • Publication number: 20130189821
    Abstract: Methods for fabricating semiconductor devices are provided. In an embodiment, a method of fabricating a semiconductor device on a semiconductor substrate includes selectively implanting dopant ions to form implants in the semiconductor substrate. Trenches are formed in the semiconductor substrate and the trenches are filled with an isolation material. An upper surface of the isolation material is established substantially coplanar with the semiconductor substrate. In the method, the implants and the isolation material are then simultaneously annealed.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hans-Jürgen Thees, Boris Bayha
  • Publication number: 20130105917
    Abstract: Disclosed herein are various methods of epitaxially forming materials on transistor devices. In one example, the method includes forming an isolation region in a semiconducting substrate that defines an active area, performing a heating process on the active area to cause an upper surface of the active area to become a curved surface and performing an etching process on the active area to define a recess having a curved bottom surface. The method further includes the steps of forming a channel semiconductor material in the recess with a curved upper surface and forming a gate structure for a transistor above the curved upper surface of the channel semiconductor material.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Hans-Juergen Thees, Peter Javorka
  • Publication number: 20130105900
    Abstract: One illustrative method disclosed herein includes forming a first recess in a first active region of a substrate, forming a first layer of channel semiconductor material for a first PFET transistor in the first recess, performing a first thermal oxidation process to form a first protective layer on the first layer of channel semiconductor material, forming a second recess in the second active region of the semiconducting substrate, forming a second layer of channel semiconductor material for the second PFET transistor in the second recess and performing a second thermal oxidation process to form a second protective layer on the second layer of channel semiconductor material.
    Type: Application
    Filed: November 2, 2011
    Publication date: May 2, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hans-Juergen Thees, Stephan Kronholz, Peter Javorka
  • Publication number: 20130037866
    Abstract: A method for forming a semiconductor device includes providing a substrate and depositing a gate stack having a side periphery on the substrate. A first liner dielectric layer is deposited on the substrate and the gate stack. A first spacer dielectric layer is deposited on the first liner dielectric layer. The first spacer dielectric layer is selectively etched such that the first spacer dielectric layer remains adjacent at least a portion of the side periphery of the gate stack. A first resist mask is disposed on a first portion of the first spacer dielectric layer such that the first portion of the first spacer dielectric layer is protected by the resist mask and a second portion of the first spacer dielectric layer is not protected by the resist mask. The first spacer dielectric layer is etched such that the second portion is removed and the first portion remains.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 14, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hans-Jürgen Thees, Roman Boschke, Ralf Otterbach
  • Publication number: 20130015527
    Abstract: The present disclosure is directed to various methods of forming metal silicide regions on an integrated circuit device. In one example, the method includes forming a PMOS transistor and an NMOS transistor, each of the transistors having a gate electrode and at least one source/drain region formed in a semiconducting substrate, forming a first sidewall spacer adjacent the gate electrodes and forming a second sidewall spacer adjacent the first sidewall spacer.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 17, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hans-Juergen Thees, Peter Baars
  • Publication number: 20120302037
    Abstract: Generally, the present disclosure is directed to a method of at least reducing unwanted erosion of isolation structures of a semiconductor device during fabrication. One illustrative method disclosed includes forming an isolation structure in a semiconducting substrate and forming a conductive protection ring above plurality isolation structure.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hans-Juergen Thees, Stephan Kronholz, Joerg Radecker
  • Publication number: 20120161243
    Abstract: In sophisticated semiconductor devices, high-k metal gate electrode structures may be formed in an early manufacturing stage with superior integrity of sensitive gate materials by providing an additional liner material after the selective deposition of a strain-inducing semiconductor material in selected active regions. Moreover, the dielectric cap materials of the gate electrode structures may be removed on the basis of a process flow that significantly reduces the degree of material erosion in isolation regions and active regions by avoiding the patterning and removal of any sacrificial oxide spacers.
    Type: Application
    Filed: August 4, 2011
    Publication date: June 28, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stephan Kronholz, Markus Lenski, Hans-Juergen Thees
  • Publication number: 20120156865
    Abstract: When forming sophisticated semiconductor-based gate electrode structures of transistors, the pre-doping of one type of gate electrode structure may be accomplished after the actual patterning of the electrode material by using an appropriate mask or fill material for covering the active regions and using a lithography mask. In this manner, a high degree of flexibility is provided with respect to selecting an appropriate patterning regime, while at the same time a uniform and superior cross-sectional shape for any type of gate electrode structure is obtained.
    Type: Application
    Filed: July 25, 2011
    Publication date: June 21, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hans-Juergen Thees, Sven Beyer, Martin Mazur, Steffen Laufer
  • Publication number: 20120156846
    Abstract: In sophisticated semiconductor devices, a semiconductor alloy, such as a threshold adjusting semiconductor material in the form of silicon/germanium, may be provided in an early manufacturing stage selectively in certain active regions, wherein a pronounced degree of recessing and material loss, in particular in isolation regions, may be avoided by providing a protective material layer selectively above the isolation regions. For example, in some illustrative embodiments, a silicon material may be selectively deposited on the isolation regions.
    Type: Application
    Filed: July 27, 2011
    Publication date: June 21, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hans-Juergen Thees, Stephan Kronholz, Maciej Wiatr