Patents by Inventor Hans-Rudolf Burkhard

Hans-Rudolf Burkhard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9027380
    Abstract: A force-transmitting mechanism (110) has stationary and load-receiving portions (111, 112). The load-receiving portion is joined to a measurement transducer on the stationary portion through a force-transmitting connection, directly or through at least one coupling element (119) and at least one lever (116). The force-transmitting mechanism has a parallel-guided coupling means (124), a calibration lever (120) with a fulcrum on the stationary portion, and calibration lever arms (121, 122), one of which is rigidly connected to a calibration weight (123). The parallel-guided coupling means (124) is arranged between the second calibration lever arm and the at least one coupling element or an arm (117, 118) of the lever. The parallel-guided coupling means is divided into fixed and parallel-guided coupling parts (126, 125), which allows a force to be transmitted between the coupling parts. Parallel elements of the parallel-guided coupling part absorb relative traverse displacements from transmitted forces.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: May 12, 2015
    Assignee: Mettler-Toledo AG
    Inventors: Hans-Rudolf Burkhard, Ferdinand Schneider
  • Publication number: 20150101869
    Abstract: Eccentric loading errors of a weighing cell (1) with a parallel guiding mechanism are determined and corrected or at least reduced. The weighing cell has a test weight actuating device (14), by which at least one test weight (15) is positioned successively on at least three test weight support points (16, 17, 18, 19, 20) of the test load receiver (4) that do not lie in a straight line. A processor unit (21) uses a control signal (S1) to position the test weight on the support points. A test weighing signal (T) is generated for each support point, and from these, eccentric loading errors are ascertained. A device for correcting the eccentric loading errors uses control signals (S2) from the processor unit to make a geometrical-mechanical change in the parallel guiding mechanism, using a first and a second actuating unit.
    Type: Application
    Filed: October 10, 2014
    Publication date: April 16, 2015
    Inventor: Hans-Rudolf Burkhard
  • Publication number: 20140291040
    Abstract: A force exerted by a load is determined in a force-measuring device (1) operating under electromagnetic force compensation. The device includes a measurement transducer (18, 118) with a coil (20, 120) movably immersed in a magnet system (19, 119) and a force-transmitting mechanical connection between a load-receiving part (12, 112) and the coil or magnet system. A position sensor (21, 28), also part of the device, determines a displacement of the coil from its settling position relative to the magnet system (19, 119) which occurs when the load is placed on the load-receiving part. An electrical current (24) flowing through the coil generates an electromagnetic force between the coil and the magnet system whereby the coil and the load-receiving part are returned to, and/or held at, the settling position. The magnitude of current and the amount of displacement are used to determine the weight force exerted by the load.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Inventors: Daniel Schrag, Daniel Rupp, Christoph Trautweiler, Hans-Rudolf Burkhard
  • Patent number: 8800345
    Abstract: A load carrier with a receiving pan for a free-flowing substance, a calibration weight holder for supporting a calibration weight, and a connector element for connecting the load carrier to a load receiver of a weighing cell. The receiving pan is arranged between the connector element and the calibration weight holder and is designed to be loaded with the free-flowing substance through a passage in the calibration weight holder. The calibration weight holder can be loaded with a calibration weight independently of the load status of the receiving pan.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: August 12, 2014
    Assignee: Mettler-Toledo AG
    Inventors: Andreas Metzger, Peter Schilling, Stephan Baltisberger, Hans-Rudolf Burkhard
  • Publication number: 20140020960
    Abstract: A force-measuring device (1) for a gravimetric measuring instrument has a stationary part (11) and a load-receiving part (12). Parallel guide members (14, 15) connect the receiving parts. The device also has at least one balance beam (19) connected to the load-receiving part through a coupling member (17) acting on a first lever arm (18) thereof, and which, at a second lever arm (20) thereof, is connected to a measurement transducer (22) which is arranged on the stationary part. Further levers (29, 30) can be arranged, respectively, between the first lever arm and the load-receiving part, and between the second lever arm and the measurement transducer. At least one sliding weight (23, 23A, 23B) is arranged on the at least one balance beam, wherein the position of each of the sliding weights present can be varied in a controlled way by means of at least one drive mechanism.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 23, 2014
    Applicant: Mettler-Toledo AG
    Inventors: Andreas Metzger, Stephan Baltisberger, Hans-Rudolf Burkhard
  • Patent number: 8581121
    Abstract: The disclosed embodiments describe force-transmitting devices for use in gravimetric measuring instruments. The force-transmitting devices scale the force from a calibration weight to facilitate calibration and weighing. The devices comprise unidirectional coupling elements. The unidirectional coupling element comprises coupling element parts. The elements may be adapted to transmit only a tensile force or only a compressive force to a measurement transducer. Adapting the unidirectional coupling element to transmit one type of force or the other may be done by selecting an appropriate arrangement of coupling element parts. The coupling element parts are adapted to transmit force along a midline axis by either a projection and v-shaped groove coupling or projections on the first part mated with surfaces on the second part adapted to receive and guide the first part.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: November 12, 2013
    Assignee: Mettler-Toledo AG
    Inventors: Hans-Rudolf Burkhard, Ferdinand Schneider, Dominique Genoud
  • Publication number: 20130233045
    Abstract: A force-transmitting mechanism (110) has stationary and load-receiving portions (111, 112). The load-receiving portion is joined to a measurement transducer on the stationary portion through a force-transmitting connection, directly or through at least one coupling element (119) and at least one lever (116). The force-transmitting mechanism has a parallel-guided coupling means (124), a calibration lever (120) with a fulcrum on the stationary portion, and calibration lever arms (121, 122), one of which is rigidly connected to a calibration weight (123). The parallel-guided coupling means (124) is arranged between the second calibration lever arm and the at least one coupling element or an arm (117, 118) of the lever. The parallel-guided coupling means is divided into fixed and parallel-guided coupling parts (126, 125), which allows a force to be transmitted between the coupling parts. Parallel elements of the parallel-guided coupling part absorb relative traverse displacements from transmitted forces.
    Type: Application
    Filed: March 6, 2012
    Publication date: September 12, 2013
    Applicant: METTLER-TOLEDO AG
    Inventors: Hans-Rudolf Burkhard, Ferdinand Schneider
  • Publication number: 20120312069
    Abstract: A force-transmitting mechanism of a gravimetric measuring instrument, with a stationary portion, and a load-receiving portion that is joined through a force-transmitting connection to a measurement transducer that is arranged on the stationary portion. A calibration weight may be coupled to the force-transmitting mechanism in such a way as to minimize the degree to which changes of the geometry can affect the force that the calibration weight exerts on the measurement transducer.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 13, 2012
    Applicant: METTLER-TOLEDO AG
    Inventors: Hans-Rudolf Burkhard, Ferdinand Schneider
  • Patent number: 8153913
    Abstract: A gravimetric measuring instrument has a weighing cell and a flexible, tubular-shaped encapsulation. The weighing cell has a parallel-guiding mechanism and at least one measurement transducer. The ends of the encapsulation are attached, respectively, to the stationary parallelogram leg and the movable parallelogram leg, so that at least the parallel-guiding mechanism and the measurement transducer are enclosed by the encapsulation, protecting them from dirt and humidity. In some aspects, the parallel-guiding mechanism has an adjustment region formed at one of the parallelogram legs which allows adjustment of the distance between at least one flexure pivot of the upper parallel-guiding member and a flexure pivot of the lower parallel-guiding member. This adjustment region is mechanically connected to at least one adjustment-setting area, which is arranged outside the encapsulation and allows changes to be made to the adjustment region.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: April 10, 2012
    Assignee: Mettler-Toledo AG
    Inventors: Roman Haefeli, Jean-Christophe Emery, Hans-Rudolf Burkhard
  • Publication number: 20110296899
    Abstract: A load carrier with a receiving pan for a free-flowing substance, a calibration weight holder for supporting a calibration weight, and a connector element for connecting the load carrier to a load receiver of a weighing cell. The receiving pan is arranged between the connector element and the calibration weight holder and is designed to be loaded with the free-flowing substance through a passage in the calibration weight holder. The calibration weight holder can be loaded with a calibration weight independently of the load status of the receiving pan.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 8, 2011
    Applicant: METTLER-TOLEDO AG
    Inventors: Andreas Metzger, Peter Schilling, Stephan Baltisberger, Hans-Rudolf Burkhard
  • Publication number: 20110147099
    Abstract: The disclosed embodiments describe force-transmitting devices for use in gravimetric measuring instruments. The force-transmitting devices scale the force from a calibration weight to facilitate calibration and weighing. The devices comprise unidirectional coupling elements. The unidirectional coupling element comprises coupling element parts. The elements may be adapted to transmit only a tensile force or only a compressive force to a measurement transducer. Adapting the unidirectional coupling element to transmit one type of force or the other may be done by selecting an appropriate arrangement of coupling element parts. The coupling element parts are adapted to transmit force along a midline axis by either a projection and v-shaped groove coupling or projections on the first part mated with surfaces on the second part adapted to receive and guide the first part.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 23, 2011
    Applicant: METTLER-TOLEDO AG
    Inventors: Hans-Rudolf Burkhard, Ferdinand Schneider, Dominique Genoud
  • Patent number: 7948341
    Abstract: A coil for an inductive sensor, such as a coil which is used in a sensor that operates according to the principle of electromagnetic force compensation for converting an amount of force generated by a load applied to a force-measuring cell into an electrical signal, is provided with protection against the penetration of moisture. The protection includes a protective covering with a surface-smoothing undercoating applied to the coil, on which a second level of coverage is applied as a protective coating against the penetration of moisture.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: May 24, 2011
    Assignee: Mettler-Toledo AG
    Inventors: Jean-Maurice Tellenbach, Volker Ziebart, Hans-Rudolf Burkhard
  • Patent number: 7935900
    Abstract: Weighing device with at least one weighing cell and with a receiving structure serving to hold the at least one weighing cell, wherein the at least one weighing cell includes a first fastener device serving to fasten the weighing cell in the receiving structure, and the receiving structure includes a second fastener device which is a complementary counterpart of said first fastener device. The fastener devices include a detent engagement mechanism and are designed in such a way that they hold as well as release the weighing cell by means of a form-locking engagement which can be locked and released, respectively, by a simple action in the form of pushing in the direction of the load and pulling against the direction of the load.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: May 3, 2011
    Assignee: Mettler-Toldeo AG
    Inventors: Peter Schilling, Andreas Metzger, Hans-Rudolf Burkhard, Thomas Koeppel, Jean-Christophe Emery
  • Patent number: 7851713
    Abstract: A parallel-guiding mechanism has a vertically movable parallel leg that carries a weighing pan. The movable parallel leg is connected by two essentially horizontal parallel guides to a stationary parallel leg installed in a balance, wherein elastic flexure pivots are formed at the ends of the parallel guides. Incisions that reduce the material strength of the parallel leg in at least one appropriate location define at least one adjustment domain, thus forming a deformation zone which is plastically deformed through application of an adjustment force. In this manner, a corner load error of the parallel-guiding mechanism is corrected.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: December 14, 2010
    Assignee: Mettler-Toledo AG
    Inventors: Hans-Rudolf Burkhard, Dominique Genoud, Andreas Metzger, Stephan Baltisberger, Thomas Köppel
  • Patent number: 7829802
    Abstract: In a parallel-guiding mechanism, a stationary parallel leg surrounds a movable parallel leg. The movable parallel leg is connected to the stationary parallel leg and guided in vertical movement by first and second parallel-guiding elements, fastened respectively to the upper and lower end portions. The movable parallel leg can be connected to a load receiver and to a force-measuring cell through a force-transmitting connection in order to transmit the weighing load. Intermediate to, and connecting, the respective end portions is a tilt-adjustment feature, by which the end portions are tilt-adjusted relative to each other about at least one tilt axis to correct a corner load error. The tilt-adjustment feature is provided by at least one of: a pair of bending zones, a spherical joint and a ring-shaped constriction.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 9, 2010
    Assignee: Mettler-Toledo AG
    Inventors: Hans-Rudolf Burkhard, Dominique Genoud, Andreas Metzger, Stephan Baltisberger, Thomas Köppel
  • Patent number: 7690273
    Abstract: The force-measuring device includes a measuring unit and a reference unit, the latter serving to deliver a reference quantity, a reference current (IREF) or a reference voltage (UREF), through which the force (FMO) of a measurement object which is to be determined can be measured by the measuring unit. The reference unit is a force-measuring device which is loaded with a reference mass and which in accordance with the principle of electromagnetic force compensation generates a reference current (IREF) that can be regulated through a measuring- and regulating device in such that in a first reference coil which is held by a reference lever, the reference current (IREF) generates a magnetic field which cooperates with the magnetic field of a reference magnet. Through this cooperation a magnetic force is brought to bear on the reference lever. As a result, the force (FREF) of the reference mass which is likewise acting on the reference lever can be compensated by said magnetic force.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: April 6, 2010
    Assignee: Mettler-Toledo AG
    Inventors: Daniel Reber, Hans-Rudolf Burkhard
  • Patent number: 7686507
    Abstract: Multi-module weighing system with a holding structure serving to receive a plurality of weighing modules which are rigidly connected to each other in a given spatial arrangement and are operable independently of each other, wherein each weighing module comprises at least one load receiver, wherein the multi-module weighing system is connected to a temperature control device which is in thermal connection with each of the weighing modules.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: March 30, 2010
    Assignee: Mettler-Toledo AG
    Inventors: Jean-Christophe Emery, Han-Rudolf Burkhard
  • Publication number: 20100044119
    Abstract: In a parallel-guiding mechanism, a stationary parallel leg surrounds a movable parallel leg. The movable parallel leg is connected to the stationary parallel leg and guided in vertical movement by first and second parallel-guiding elements, fastened respectively to the upper and lower end portions. The movable parallel leg can be connected to a load receiver and to a force-measuring cell through a force-transmitting connection in order to transmit the weighing load. Intermediate to, and connecting, the respective end portions is a tilt-adjustment feature, by which the end portions are tilt-adjusted relative to each other about at least one tilt axis to correct a corner load error. The tilt-adjustment feature is provided by at least one of: a pair of bending zones, a spherical joint and a ring-shaped constriction.
    Type: Application
    Filed: November 3, 2009
    Publication date: February 25, 2010
    Applicant: Mettler-Toledo AG
    Inventors: Hans-Rudolf Burkhard, Dominique Genoud, Andreas Metzger, Stephan Baltisberger, Thomas Köppel
  • Publication number: 20100044118
    Abstract: A parallel-guiding mechanism has a vertically movable parallel leg that carries a weighing pan. The movable parallel leg is connected by two essentially horizontal parallel guides to a stationary parallel leg installed in a balance, wherein elastic flexure pivots are formed at the ends of the parallel guides. Incisions that reduce the material strength of the parallel leg in at least one appropriate location define at least one adjustment domain, thus forming a deformation zone which is plastically deformed through application of an adjustment force. In this manner, a corner load error of the parallel-guiding mechanism is corrected.
    Type: Application
    Filed: November 3, 2009
    Publication date: February 25, 2010
    Applicant: Mettler-Toledo AG
    Inventors: Hans-Rudolf Burkhard, Dominique Genoud, Andreas Metzger, Stephan Baltisberger, Thomas Köppel
  • Patent number: D610030
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: February 16, 2010
    Assignee: Mettler-Toledo AG
    Inventors: Yves Marmier, Peter Schilling, Andreas Metzger, Stephan Baltisberger, Hans-Rudolf Burkhard