Patents by Inventor Hao Chuang

Hao Chuang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12154924
    Abstract: Various embodiments of the present application are directed to a narrow band filter with high transmission and an image sensor comprising the narrow band filter. In some embodiments, the filter comprises a first distributed Bragg reflector (DBR), a second DBR, a defect layer between the first and second DBRs, and a plurality of columnar structures. The columnar structures extend through the defect layer and have a refractive index different than a refractive index of the defect layer. The first and second DBRs define a low transmission band, and the defect layer defines a high transmission band dividing the low transmission band. The columnar structures shift the high transmission band towards lower or higher wavelengths depending upon a refractive index of the columnar structures and a fill factor of the columnar structures.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: November 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Publication number: 20240387594
    Abstract: Image sensor structures are provided. In some embodiments, an image sensor structure is provided. The image sensor structure includes a substrate and a light-sensing region formed in the substrate and extending from the top surface to the bottom surface of the substrate. The image sensor structure further includes a first isolation structure extending from the top surface of the substrate to a middle portion of the substrate and a second isolation structure formed extending from the bottom surface of the substrate to the middle portion of the substrate and in contact with the first isolation structure.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuichiro YAMASHITA, Chun-Hao CHUANG, Hirofumi SUMI
  • Patent number: 12148783
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor device including a first image sensor element and a second image sensor element disposed within a substrate. An interconnect structure is disposed along a front-side surface of the substrate and comprises a plurality of conductive wires, a plurality of conductive vias, and a first absorption structure. The first image sensor element is configured to generate electrical signals from electromagnetic radiation within a first range of wavelengths. The second image sensor element is configured to generate electrical signals from the electromagnetic radiation within a second range of wavelengths that is different than the first range of wavelengths. The second image sensor element is laterally adjacent to the first image sensor element. Further, the first image sensor element overlies the first absorption structure and is spaced laterally between opposing sidewalls of the first absorption structure.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 19, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keng-Yu Chou, Cheng Yu Huang, Chun-Hao Chuang, Wen-Hau Wu, Wei-Chieh Chiang, Wen-Chien Yu, Chih-Kung Chang
  • Publication number: 20240379714
    Abstract: Some embodiments relate to a CMOS image sensor disposed on a substrate. A plurality of pixel regions comprising a plurality of photodiodes, respectively, are configured to receive radiation that enters a back-side of the substrate. A boundary deep trench isolation (BDTI) structure is disposed at boundary regions of the pixel regions, and includes a first set of BDTI segments extending in a first direction and a second set of BDTI segments extending in a second direction perpendicular to the first direction to laterally surround the photodiode. The BDTI structure comprises a first material. A pixel deep trench isolation (PDTI) structure is disposed within the BDTI structure and overlies the photodiode. The PDTI structure comprises a second material that differs from the first material, and includes a first PDTI segment extending in the first direction such that the first PDTI segment is surrounded by the BDTI structure.
    Type: Application
    Filed: July 24, 2024
    Publication date: November 14, 2024
    Inventors: Cheng Yu Huang, Wei-Chieh Chiang, Keng-Yu Chou, Chun-Hao Chuang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20240379703
    Abstract: The present disclosure relates to an integrated chip including a substrate and a pixel. The pixel includes a photodetector. The photodetector is in the substrate. The integrated chip further includes a first inner trench isolation structure and an outer trench isolation structure that extend into the substrate. The first inner trench isolation structure laterally surrounds the photodetector in a first closed loop. The outer trench isolation structure laterally surrounds the first inner trench isolation structure along a boundary of the pixel in a second closed loop and is laterally separated from the first inner trench isolation structure. Further, the integrated chip includes a scattering structure that is defined, at least in part, by the first inner trench isolation structure and that is configured to increase an angle at which radiation impinges on the outer trench isolation structure.
    Type: Application
    Filed: July 21, 2024
    Publication date: November 14, 2024
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20240371895
    Abstract: A method for forming an image sensor package is provided. An image sensor chip is formed over a package substrate. A protection layer is formed overlying the image sensor chip. The protection layer has a planar top surface and a bottom surface lining and contacting structures under the protection layer. An opening is formed into the protection layer and spaced around a periphery of the image sensor chip. A light shielding material is filled in the opening to form an on-wafer shield structure having a sidewall directly contact the protection layer.
    Type: Application
    Filed: July 17, 2024
    Publication date: November 7, 2024
    Inventors: Wen-Hau Wu, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Cheng Yu Huang
  • Publication number: 20240371297
    Abstract: A product information identification and sealed product ensuring system consists essentially of an electronic label seal and an information reading device. The electronic label seal is mainly composed of a conductive loop antenna. An information reading device can sense the electronic label seal through near-field communication, and obtain a unique identification code of the electronic label seal and a link it carries. The information reading device can execute the link and obtain a product information corresponding to the electronic label seal. Additionally, a special adhesive is used to print a circuit antenna of the electronic label seal, so that the electronic label seal is for one-time use only. After the circuit antenna is torn off, connection between the circuit antenna and a chip is damaged, resulting in loss of its original sealing characteristic.
    Type: Application
    Filed: February 21, 2024
    Publication date: November 7, 2024
    Inventor: Lien Hao CHUANG
  • Publication number: 20240363668
    Abstract: In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes at least one device on a front side of a semiconductor substrate. A plurality of grating layers are under the at least one device. The plurality of grating layers include at least a first material having a first refractive index alternating with a second material having a second refractive index. Contacts extend through an interlevel dielectric material, and further extend through the semiconductor substrate, to directly contact at least one of the first material and the second material below the at least one device and below the semiconductor substrate underlying the interlevel dielectric material.
    Type: Application
    Filed: July 11, 2024
    Publication date: October 31, 2024
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Hau Wu
  • Patent number: 12100720
    Abstract: A method for forming an image sensor package is provided. An image sensor chip is formed over a package substrate. A protection layer is formed overlying the image sensor chip. The protection layer has a planar top surface and a bottom surface lining and contacting structures under the protection layer. An opening is formed into the protection layer and spaced around a periphery of the image sensor chip. A light shielding material is filled in the opening to form an on-wafer shield structure having a sidewall directly contact the protection layer.
    Type: Grant
    Filed: July 27, 2023
    Date of Patent: September 24, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hau Wu, Chun-Hao Chuang, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Cheng Yu Huang
  • Publication number: 20240250098
    Abstract: An integrated chip including a first semiconductor substrate. The first semiconductor substrate includes a doped region. A first photodetector and a second photodetector are in the first semiconductor substrate. A trench isolation layer at least partially surrounds the first photodetector and the second photodetector and extends between the first photodetector and the second photodetector. The trench isolation layer has a first pair of sidewalls. The first semiconductor substrate extends from the first photodetector, between the first pair of sidewalls, to the second photodetector. The doped region is between the first pair of sidewalls. The first photodetector and a first gate partially form a first transistor. The second photodetector and a second gate partially form a second transistor. A second semiconductor substrate is over the first gate and the second gate. A third transistor is along the second semiconductor substrate. The third transistor is coupled to the first transistor.
    Type: Application
    Filed: May 22, 2023
    Publication date: July 25, 2024
    Inventors: Chi-Hsien Chung, Tzu-Jui Wang, Chia-Chi Hsiao, Chun-Hao Chuang, Chen-Jong Wang, Dun-Nian Yaung
  • Publication number: 20240185944
    Abstract: A failure analysis and detection method for a memory is configured to perform abnormal bit detection on a memory. The failure analysis and detection method includes: coordinates are marked on a detection area of the memory, and the coordinates are associated with layout design or a process of the detection area; a MOD function is used to perform classification according to regularity of the coordinates, and the MOD function is a function for getting remainder; and failure information corresponding to the classification is obtained from a failure bitmap (FBM) of the detection area, and the failure information includes a failure cause corresponding to the layout design or the process.
    Type: Application
    Filed: February 6, 2023
    Publication date: June 6, 2024
    Applicant: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Chingching Shih, Jen-Hao Chuang
  • Publication number: 20240186315
    Abstract: A transient voltage suppressor with adjustable trigger and holding voltages is provided, including a heavily doped substrate of a first conductivity type connected to a first node, a lightly doped epitaxial layer of a second conductivity type on the substrate, a first and third well region of the first conductivity type, a second well region of the second conductivity type, a first and third heavily doped region of the second conductivity type and a second heavily doped region of the first conductivity type. The heavily doped regions are commonly electrically connected to a second node, and individually disposed in the well regions. Trenches are disposed opposite in the substrate for electrical isolation. A floating base bipolar junction transistor and silicon controlled rectifier can be respectively formed under a positive and negative surged mode. Accordingly, the invention is advantageous of superior electrical performances, high layout flexibility and low area consumption.
    Type: Application
    Filed: December 5, 2022
    Publication date: June 6, 2024
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: Sung-Chih HUANG, Chih-Ting YEH, Che-Hao CHUANG
  • Publication number: 20240170506
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a first pixel region and a second pixel region within a substrate. A first recess region is disposed along a back-side of the substrate within the first pixel region. The back-side of the substrate within the first pixel region is asymmetric about a center of the first pixel region in a cross-sectional view. A second recess region is disposed along the back-side of the substrate and within the second pixel region. The back-side of the substrate within the second pixel region is asymmetric about a center of the second pixel region in the cross-sectional view. The first recess region and the second recess region are substantially symmetric about a vertical line laterally between the first pixel region and the second pixel region.
    Type: Application
    Filed: February 1, 2024
    Publication date: May 23, 2024
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang
  • Publication number: 20240113143
    Abstract: Various embodiments of the present disclosure are directed towards an imaging device including a first image sensor element and a second image sensor element respectively comprising a pixel unit disposed within a semiconductor substrate. The first image sensor element is adjacent to the second image sensor element. A first micro-lens overlies the first image sensor element and is laterally shifted from a center of the pixel unit of the first image sensor element by a first lens shift amount. A second micro-lens overlies the second image sensor element and is laterally shifted from a center of the pixel unit of the second image sensor element by a second lens shift amount different from the first lens shift amount.
    Type: Application
    Filed: January 6, 2023
    Publication date: April 4, 2024
    Inventors: Cheng Yu Huang, Wen-Hau Wu, Chun-Hao Chuang, Keng-Yu Chou, Wei-Chieh Chiang, Chih-Kung Chang
  • Publication number: 20240088182
    Abstract: In some embodiments, an image sensor is provided. The image sensor includes a photodetector disposed in a semiconductor substrate. A wave guide filter having a substantially planar upper surface is disposed over the photodetector. The wave guide filter includes a light filter disposed in a light filter grid structure. The light filter includes a first material that is translucent and has a first refractive index. The light filter grid structure includes a second material that is translucent and has a second refractive index less than the first refractive index.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Cheng Yu Huang, Chun-Hao Chuang, Chien-Hsien Tseng, Kazuaki Hashimoto, Keng-Yu Chou, Wei-Chieh Chiang, Wen-Chien Yu, Ting-Cheng Chang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: 11923392
    Abstract: The present disclosure relates to an integrated chip. The integrated chip includes an image sensing element disposed within a substrate. A gate structure is disposed along a front-side of the substrate. A back-side of the substrate includes one or more first angled surfaces defining a central diffuser disposed over the image sensing element. The back-side of the substrate further includes second angled surfaces defining a plurality of peripheral diffusers laterally surrounding the central diffuser. The plurality of peripheral diffusers are a smaller size than the central diffuser.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Jen-Cheng Liu, Kazuaki Hashimoto, Ming-En Chen, Shyh-Fann Ting, Shuang-Ji Tsai, Wei-Chieh Chiang
  • Patent number: 11923386
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip. The integrated chip includes a first photodetector disposed in a first pixel region of a semiconductor substrate and a second photodetector disposed in a second pixel region of the semiconductor substrate. The second photodetector is laterally separated from the first photodetector. A first diffuser is disposed along a back-side of the semiconductor substrate and over the first photodetector. A second diffuser is disposed along the back-side of the semiconductor substrate and over the second photodetector. A first midline of the first pixel region and a second midline of the second pixel region are both disposed laterally between the first diffuser and the second diffuser.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Keng-Yu Chou, Chun-Hao Chuang, Kazuaki Hashimoto, Wei-Chieh Chiang, Cheng Yu Huang, Wen-Hau Wu, Chih-Kung Chang
  • Patent number: D1023748
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: April 23, 2024
    Inventor: Lien Hao Chuang
  • Patent number: D1039974
    Type: Grant
    Filed: November 25, 2022
    Date of Patent: August 27, 2024
    Inventor: Lien Hao Chuang
  • Patent number: D1042133
    Type: Grant
    Filed: November 25, 2022
    Date of Patent: September 17, 2024
    Inventor: Lien Hao Chuang