Patents by Inventor Hao-Yen Tang

Hao-Yen Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954279
    Abstract: A solid-state switch for an external system includes a cover member, a first solid-state transducer, a second transducer, a microcontroller, a user feedback device, and a switching circuit. The first transducer is mechanically coupled to the cover member and configured to generate first signals in response to a perturbation at the cover member. The second transducer is configured to generate second signals in response to the perturbation. The microcontroller is configured to obtain first data from the first signals, second data from the second signals, and determine user inputs in accordance with at least the first data, the second data, and an operational state of the solid-state switch. The user feedback device is configured to provide feedback to a user of the switch in accordance with a switching behavior of the switching circuit.
    Type: Grant
    Filed: May 1, 2023
    Date of Patent: April 9, 2024
    Assignee: UltraSense Systems, Inc.
    Inventors: Andrew Jonathan Wright, Hao-Yen Tang, Chien-Te Lee, Mo Maghsoudnia
  • Publication number: 20240061531
    Abstract: A multi-virtual button finger-touch input system includes a cover layer, force-measuring and touch-sensing integrated circuits (FMTSICs), each coupled to the inner surface of the cover layer corresponding to one of the virtual buttons, an elongate flexible circuit, and a host controller. The FMTSICs are mounted to the elongate flexible circuit. The host controller is in communication with each of the FMTSICs via digital bus wiring. The host controller is configured to: (1) obtain force-localization features and ultrasound-localization features of the FMTSICs and (2) determine whether an event is a finger-touch event or a false-trigger event and if the event is determined to be finger-touch event, identify one of the virtual buttons as a touched virtual button, using at least in part a model that has the force-localization features and the ultrasound-localization features as inputs.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Inventors: Michael Chen, Zhongxuan Tu, Sina Akhbari, Hao-Yen Tang
  • Patent number: 11898925
    Abstract: A system for mapping data of force transmission from a plurality of force-imparting points to each force-measuring device is disclosed. A linear actuator assembly includes a Z-axis actuator and a slider. A load cell is secured to the slider, such that actuation of the Z-axis actuator is mechanically coupled to a vertical movement of the load cell via the slider. A sample stage includes a sample stage positioner and is configured to retain a sample including at least one force-measuring device. The load cell is configured to impart a time-varying applied force to the sample. The controller is configured to control actuation of the sample positioner to position the load cell at each one of a plurality of force-imparting points on the sample and, for each respective force-imparting point, control the actuation of the Z-axis actuator.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: February 13, 2024
    Assignee: UltraSense Systems, Inc.
    Inventors: Zhongxuan Tu, Deliang Tao, Chunlei Qian, Sina Akhbari, Hao-Yen Tang
  • Publication number: 20240028124
    Abstract: In some embodiments, an integrated virtual button module includes a first transducer, a microcontroller, and a first driver circuit. The first transducer includes a transient strain-sensing element and is configured to generate first signals. The microcontroller is configured to obtain first data from the first signals and determine user inputs in accordance with at least the first data. The first driver circuit is configured to receive user feedback data and to generate a first user feedback signal in accordance with the user feedback data. The first driver circuit is electronically couplable to a first actuator. The user feedback data are determined in accordance with at least the user inputs. The first actuator emits a haptic signal and/or a first audio signal when driven by the first user feedback signal. Embodiments of an integrated virtual button system and a method of determining user input and providing user feedback are also disclosed.
    Type: Application
    Filed: August 23, 2023
    Publication date: January 25, 2024
    Inventors: Hao-Yen Tang, Hsiou-Yuan Liu, Yonghuan David Ren, Mo Maghsoudnia
  • Patent number: 11835400
    Abstract: A force-measuring device testing system is disclosed. A linear actuator assembly includes a Z-axis actuator and a slider. A load cell is secured to the slider, such that actuation of the Z-axis actuator is mechanically coupled to a vertical movement of the load cell via the slider. The load cell is configured to impart a time-varying applied force to the sample which includes a force-measuring device. A load cell signal processing circuitry is configured to measure force signals at the load cell and output amplified force signals to the controller. The controller is configured to repeatedly carry out the following until a desired force trajectory has been executed: (1) calculate digital force signals in accordance with the amplified force signals, (2) calculate a next actuation of the Z-axis actuator in accordance with a desired force trajectory and an elastic parameter, and (3) control the actuation of the Z-axis actuator in accordance with its next calculated actuation.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: December 5, 2023
    Assignee: UltraSense Systems, Inc.
    Inventors: Zhongxuan Tu, Deliang Tao, Chunlei Qian, Sina Akhbari, Hao-Yen Tang
  • Patent number: 11829534
    Abstract: A system for delineating a location of a virtual button by haptic feedback includes a cover layer, a touch-input sub-system, a haptic transducer, and a haptic controller. The touch-input sub-system includes force-measuring and touch-sensing integrated circuits (FMTSICs), each coupled to the inner surface of the cover layer corresponding to one of the virtual buttons. The touch-input sub-system is configured to determine: (1) supplemental haptic feedback commands if “PMUT Triggered” Boolean data is True for at least one of the FMTSICs (Touched FMTSICs) and light-force conditions are satisfied for all of the Touched FMTSICs, and (2) primary touch inputs if “PMUT Triggered” Boolean data is True for at least one of the FMTSICs (Touched FMTSICs) and light-force conditions are not satisfied for at least one of the Touched FMTSICs. The haptic controller is configured to drive the haptic transducer to generate haptic feedback in accordance with the supplemental haptic feedback commands.
    Type: Grant
    Filed: February 16, 2023
    Date of Patent: November 28, 2023
    Assignee: UltraSense Systems, Inc.
    Inventors: Hao-Yen Tang, Michael Chen, Mo Maghsoudnia
  • Patent number: 11803274
    Abstract: A multi-virtual button finger-touch input system includes a cover layer, force-measuring and touch-sensing integrated circuits (FMTSICs), each coupled to the inner surface of the cover layer corresponding to one of the virtual buttons, an elongate flexible circuit, and a host controller. The FMTSICs are mounted to the elongate flexible circuit. The host controller is in communication with each of the FMTSICs via digital bus wiring. The host controller is configured to: (1) obtain force-localization features and ultrasound-localization features of the FMTSICs and (2) determine whether an event is a finger-touch event or a false-trigger event and if the event is determined to be finger-touch event, identify one of the virtual buttons as a touched virtual button, using at least in part a model that has the force-localization features and the ultrasound-localization features as inputs.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: October 31, 2023
    Assignee: UltraSense Systems, Inc.
    Inventors: Michael Chen, Zhongxuan Tu, Sina Akhbari, Hao-Yen Tang
  • Publication number: 20230333066
    Abstract: A method of distinguishing between a first-type touch event and a second-type touch event is disclosed. A force-measuring and touch-sensing system includes piezoelectric force-measuring elements (PFEs) and piezoelectric ultrasonic transducers (PUTs), wherein each PUT can be configured as a transmitter (PUT transmitter) and/or a receiver (PUT receiver). The force-measuring and touch-sensing system is configured at a sense region. Each PUT transmitter transmits ultrasound signals towards the sense region and voltage signals are generated at the PUT receivers in response to ultrasound signals arriving from the sense region. Voltage signals are generated at PFEs in response to a low-frequency mechanical deformation of the respective piezoelectric capacitors. An event is determined to be a first-type touch event or a second-type touch event depending on a PUT data decrease and a magnitude of PFE data.
    Type: Application
    Filed: June 20, 2023
    Publication date: October 19, 2023
    Inventors: Sina Akhbari, Zhongxuan Tu, Michael Chen, Hao-Yen Tang
  • Publication number: 20230332963
    Abstract: A force-measuring and touch-sensing integrated circuit device includes a semiconductor substrate, a thin-film piezoelectric stack overlying the semiconductor substrate, piezoelectric micromechanical force-measuring elements (PMFEs), and piezoelectric micromechanical ultrasonic transducers (PMUTs). The thin-film piezoelectric stack includes a piezoelectric layer. The PMFEs and PMUTs are located at respective lateral positions along the thin-film piezoelectric stack, such that each of the PMFEs and PMUTs includes a respective portion of the thin-film piezoelectric stack. Each PMUT has a cavity, the respective portion of the thin-film piezoelectric stack, and first and second PMUT electrodes. Each PMFE has the respective portion of the thin-film piezoelectric stack, and first and second PMFE electrodes.
    Type: Application
    Filed: June 22, 2023
    Publication date: October 19, 2023
    Inventors: Hao-Yen Tang, Sina Akhbari, Man-Chia Chen, Zhongxuan Tu, Michael Chen
  • Patent number: 11775073
    Abstract: In some embodiments, an integrated virtual button module includes a first transducer, a microcontroller, and a first driver circuit. The first transducer includes a transient strain-sensing element and is configured to generate first signals. The microcontroller is configured to obtain first data from the first signals and determine user inputs in accordance with at least the first data. The first driver circuit is configured to receive user feedback data and to generate a first user feedback signal in accordance with the user feedback data. The first driver circuit is electronically couplable to a first actuator. The user feedback data are determined in accordance with at least the user inputs. The first actuator emits a haptic signal and/or a first audio signal when driven by the first user feedback signal. Embodiments of an integrated virtual button system and a method of determining user input and providing user feedback are also disclosed.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: October 3, 2023
    Assignee: UltraSense Systems, Inc.
    Inventors: Hao-Yen Tang, Hsiou-Yuan Liu, Yonghuan David Ren, Mo Maghsoudnia
  • Publication number: 20230289017
    Abstract: A user-input system includes a force-measuring device, a cover member, and an elastic circuit board substrate interposed between the force-measuring device and the cover member and mechanically coupled to the cover member and to the force-measuring device. The force-measuring device includes a strain-sensing element. The force-measuring device is mounted to and electrically connected to the elastic circuit board substrate. The cover member undergoes a primary mechanical deformation in response to forces imparted at the cover member. The elastic circuit board substrate transmits a portion of the primary mechanical deformation to the force-measuring device resulting in a concurrent secondary mechanical deformation of the force-measuring device. The strain-sensing element is configured to output voltage signals in accordance with a time-varying strain at the strain-sensing element resulting from the secondary mechanical deformation.
    Type: Application
    Filed: May 8, 2023
    Publication date: September 14, 2023
    Inventors: Hao-Yen Tang, Andrew Jonathan Wright
  • Publication number: 20230266839
    Abstract: A solid-state switch for an external system includes a cover member, a first solid-state transducer, a second transducer, a microcontroller, a user feedback device, and a switching circuit. The first transducer is mechanically coupled to the cover member and configured to generate first signals in response to a perturbation at the cover member. The second transducer is configured to generate second signals in response to the perturbation. The microcontroller is configured to obtain first data from the first signals, second data from the second signals, and determine user inputs in accordance with at least the first data, the second data, and an operational state of the solid-state switch. The user feedback device is configured to provide feedback to a user of the switch in accordance with a switching behavior of the switching circuit.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 24, 2023
    Inventors: Andrew Jonathan Wright, Hao-Yen Tang, Chien-Te Lee, Mo Maghsoudnia
  • Patent number: 11725993
    Abstract: A force-measuring and touch-sensing integrated circuit device includes a semiconductor substrate, a thin-film piezoelectric stack overlying the semiconductor substrate, piezoelectric micromechanical force-measuring elements (PMFEs), and piezoelectric micromechanical ultrasonic transducers (PMUTs). The thin-film piezoelectric stack includes a piezoelectric layer. The PMFEs and PMUTs are located at respective lateral positions along the thin-film piezoelectric stack, such that each of the PMFEs and PMUTs includes a respective portion of the thin-film piezoelectric stack. Each PMUT has a cavity, the respective portion of the thin-film piezoelectric stack, and first and second PMUT electrodes. Each PMFE has the respective portion of the thin-film piezoelectric stack, and first and second PMFE electrodes.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: August 15, 2023
    Assignee: UltraSense Systems, Inc.
    Inventors: Hao-Yen Tang, Sina Akhbari, Man-Chia Chen, Zhongxuan Tu, Michael Chen
  • Patent number: 11719671
    Abstract: A method of distinguishing between a first-type touch event and a second-type touch event is disclosed. A force-measuring and touch-sensing system includes piezoelectric force-measuring elements (PFEs) and piezoelectric ultrasonic transducers (PUTs), wherein each PUT can be configured as a transmitter (PUT transmitter) and/or a receiver (PUT receiver). The force-measuring and touch-sensing system is configured at a sense region. Each PUT transmitter transmits ultrasound signals towards the sense region and voltage signals are generated at the PUT receivers in response to ultrasound signals arriving from the sense region. Voltage signals are generated at PFEs in response to a low-frequency mechanical deformation of the respective piezoelectric capacitors. An event is determined to be a first-type touch event or a second-type touch event depending on a PUT data decrease and a magnitude of PFE data.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: August 8, 2023
    Assignee: UltraSense Systems, Inc.
    Inventors: Sina Akhbari, Zhongxuan Tu, Michael Chen, Hao-Yen Tang
  • Publication number: 20230195232
    Abstract: A system for delineating a location of a virtual button by haptic feedback includes a cover layer, a touch-input sub-system, a haptic transducer, and a haptic controller. The touch-input sub-system includes force-measuring and touch-sensing integrated circuits (FMTSICs), each coupled to the inner surface of the cover layer corresponding to one of the virtual buttons. The touch-input sub-system is configured to determine: (1) supplemental haptic feedback commands if “PMUT Triggered” Boolean data is True for at least one of the FMTSICs (Touched FMTSICs) and light-force conditions are satisfied for all of the Touched FMTSICs, and (2) primary touch inputs if “PMUT Triggered” Boolean data is True for at least one of the FMTSICs (Touched FMTSICs) and light-force conditions are not satisfied for at least one of the Touched FMTSICs. The haptic controller is configured to drive the haptic transducer to generate haptic feedback in accordance with the supplemental haptic feedback commands.
    Type: Application
    Filed: February 16, 2023
    Publication date: June 22, 2023
    Inventors: Hao-Yen Tang, Michael Chen, Mo Maghsoudnia
  • Patent number: 11681399
    Abstract: A user-input system includes a force-measuring device, a cover member, and an elastic circuit board substrate interposed between the force-measuring device and the cover member and mechanically coupled to the cover member and to the force-measuring device. The force-measuring device includes a strain-sensing element. The force-measuring device is mounted to and electrically connected to the elastic circuit board substrate. The cover member undergoes a primary mechanical deformation in response to forces imparted at the cover member. The elastic circuit board substrate transmits a portion of the primary mechanical deformation to the force-measuring device resulting in a concurrent secondary mechanical deformation of the force-measuring device. The strain-sensing element is configured to output voltage signals in accordance with a time-varying strain at the strain-sensing element resulting from the secondary mechanical deformation.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: June 20, 2023
    Assignee: UltraSense Systems, Inc.
    Inventors: Hao-Yen Tang, Andrew Jonathan Wright
  • Patent number: 11662850
    Abstract: A solid-state switch for an external system includes a cover member, a first solid-state transducer, a second transducer, a microcontroller, a user feedback device, and a switching circuit. The first transducer is mechanically coupled to the cover member and configured to generate first signals in response to a perturbation at the cover member. The second transducer is configured to generate second signals in response to the perturbation. The microcontroller is configured to obtain first data from the first signals, second data from the second signals, and determine user inputs in accordance with at least the first data, the second data, and an operational state of the solid-state switch. The user feedback device is configured to provide feedback to a user of the switch in accordance with a switching behavior of the switching circuit. The second transducer is configured as a proximity sensor for detecting proximity of an object to the cover member.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: May 30, 2023
    Assignee: UltraSense Systems, Inc.
    Inventors: Andrew Jonathan Wright, Hao-Yen Tang, Chien-Te Lee, Mo Maghsoudnia
  • Patent number: 11635840
    Abstract: In a method for determining touch applied to an electronic device, ultrasonic signals are emitted from an ultrasonic sensor. A plurality of reflected ultrasonic signals from a finger interacting with the ultrasonic sensor is captured. A first data based at least in part on a first reflected ultrasonic signal of the plurality of reflected ultrasonic signals is compared with a second data based at least in part on a second reflected ultrasonic signal of the plurality of reflected ultrasonic signals. A signal change due to a change in a feature of the finger during a touch interaction with the ultrasonic sensor is determined based on differences between the first data and the second data. A touch applied by the finger to the electronic device is determined based at least in part on the signal change due to the change in the feature of the finger.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: April 25, 2023
    Assignee: InvenSense, Inc.
    Inventors: Eitan Medina, Behrooz Abdi, Sam Massih, Romain Fayolle, Hao-Yen Tang
  • Publication number: 20230122547
    Abstract: An ultrasound time-of-flight (TOF) sensor module includes an ultrasonic transducer device, a cover layer, an elastic member, and a signal processor electronically coupled to the ultrasonic transducer. The ultrasonic transducer device includes at least one ultrasonic transducer, which is configured as an ultrasonic transmitter and/or an ultrasonic receiver. The elastic member is interposed between the ultrasonic transducer device and the cover layer. The elastic member undergoes reversible compression in response to an external object impacting and/or contacting the cover layer. An ultrasound propagation distance between the ultrasonic transducer and the cover layer varies in accordance with the compression. The ultrasonic transmitter(s) transmit ultrasound signals. The cover layer reflects a fraction f of the ultrasound signals incident thereon.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 20, 2023
    Inventors: Sina Akhbari, Hao-Yen Tang
  • Publication number: 20230119796
    Abstract: A method of assessing a user input at a virtual button of a user-input system includes: (A) configuring at least one force-measuring device including a plurality of piezoelectric micromechanical force-measuring elements (PMFEs); (B) configuring a cover layer of the user-input system including coupling the force-measuring device(s) to the cover layer at respective positions that are laterally displaced from a center point of the virtual button; (C) receiving, by each respective signal processor, the voltage signals from the PMFEs (PMFE voltage signals); (D) obtaining force-trend data from the PMFE voltage signals; and (E) assessing a user input in accordance with the force-trend data. Each of the PMFEs is configured to output voltage signals to the respective signal processor in accordance with a time-varying strain at the respective PMFE.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 20, 2023
    Inventors: Hao-Yen Tang, Sina Akhbari