Patents by Inventor Harpreet Singh

Harpreet Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190153066
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: February 5, 2019
    Publication date: May 23, 2019
    Inventors: Andrea MAHR, Toni Weinschenk, Anita Wiebe, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10294288
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: May 21, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10293036
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: May 21, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Oliver Schoor, Andrea Mahr, Toni Weinschenk, Anita Wiebe, Jens Fritsche, Harpreet Singh
  • Publication number: 20190138577
    Abstract: The present disclosure is directed toward systems, methods, and computer readable media for providing dynamic digital content via a webpage without flicker. For example, systems described herein include receiving a web document including action items associated with rendering dynamic digital content via a display device. The systems and methods described herein can reduce flicker in rendering the dynamic digital content by identifying dynamic digital content, pre-fetching external resources, and selectively hiding dynamic visual elements. In addition, the systems and methods described herein further reduce flicker by generating a dependency graph that reflects dependencies between the action items and then rendering digital content in accordance with an action queue generated based on the dependency graph. Furthermore, systems can individually reveal dynamic visual elements as action items for rendering dynamic digital content via the dynamic visual elements from the dependency graph are completed.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 9, 2019
    Inventors: Harpreet Singh, Sachin Jain, Lalit Kishore Sharma
  • Patent number: 10279022
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: May 7, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10280205
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: May 7, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Helen Hoerzer, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Publication number: 20190126307
    Abstract: A machine for dispensing fluid having digital codes stored in in the machine that are unique to the machine. Each code specifies a volume of fluid. The machine includes a fluid tank, dispensing unit, and control unit. The dispensing unit is configured to dispense the fluid when it is enabled. The control unit controls the dispensing, receiving a digital code from a user and verifying whether the code corresponds to a stored code. If it does, the control unit enables dispensing of the fluid. The control unit determines the volume of the fluid specified by the received code and enables the dispensing unit to dispense the fluid, but when the dispensing unit has dispensed the volume of the fluid specified by the received code, the control unit then disables the dispensing unit so that no more fluid can be dispensed until another valid code is provided to the machine.
    Type: Application
    Filed: October 25, 2018
    Publication date: May 2, 2019
    Inventors: Gary D. Langeman, Harpreet Singh
  • Patent number: 10272114
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 30, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Anita Wiebe, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10273282
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: April 30, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Publication number: 20190117693
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 28, 2018
    Publication date: April 25, 2019
    Inventors: Andrea MAHR, Toni Weinschenk, Anita Wiebe, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Publication number: 20190124113
    Abstract: The APPARATUSES, METHODS AND SYSTEMS FOR A SECURE RESOURCE ACCESS AND PLACEMENT PLATFORM (“SRAP PLATFORM”) provides a secure supporting infrastructure within a corporate network framework and applications based thereon for use and placement of corporate resources. A non-trusted device may be authorized to access and use corporate resources, and the corporate network server may manage the placement of resources via the SRAP PLATFORM.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventors: Harpreet Singh Labana, Yair Israel Kronenberg, Brian J. Saluzzo
  • Publication number: 20190119352
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH, Lea STEVERMANN
  • Publication number: 20190119351
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fristsche, Harpreet Singh, Lea Stevermann
  • Publication number: 20190119342
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 31, 2018
    Publication date: April 25, 2019
    Inventors: Andrea Mahr, Toni Weinschenk, Valentina Goldfinger, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10266581
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: April 23, 2019
    Assignee: IMMATICS BIOTECHNOLOGIES GMBH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 10268900
    Abstract: A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: April 23, 2019
    Assignee: SRI International
    Inventors: Ajay Divakaran, Qian Yu, Amir Tamrakar, Harpreet Singh Sawhney, Jiejie Zhu, Omar Javed, Jingen Liu, Hui Cheng, Jayakrishnan Eledath
  • Patent number: 10266922
    Abstract: Disclosed herein is an article comprising a metal alloy; where the metal alloy comprises a base metal, a second element and a third element; where the base metal is magnesium, calcium, strontium, zinc, or a combination thereof; where the second element is chemically different from the third element; and where the second element and the third element are scandium, yttrium, gadolium, cerium, neodymium, dysporium, or a combination thereof; and a protective layer disposed upon the metal alloy and is reactively bonded to the metal alloy; where the protective layer comprises a base non-metallic derivative, a second non-metallic derivative and a third non-metallic derivative of metals present in the metal alloy; and where the base non-metallic derivative, the non-second metallic derivative and the third non-metallic derivative are all chemically different from one another.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: April 23, 2019
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC.
    Inventors: Michele Viola Manuel, Josephine Allen, Jordan P. Ball, Harpreet Singh Brar, Ida Svensson Berglund
  • Publication number: 20190112347
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 27, 2018
    Publication date: April 18, 2019
    Inventors: Andrea MAHR, Toni WEINSCHENK, Valentina GOLDFINGER, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Publication number: 20190111081
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: December 27, 2018
    Publication date: April 18, 2019
    Inventors: ANDREA MAHR, TONI WEINSCHENK, ANITA WIEBE, COLETTE SONG, OLIVER SCHOOR, JENS FRITSCHE, HARPREET SINGH
  • Patent number: 10260896
    Abstract: A vehicle having a route planning device that includes a processor configured to identify a start location for a journey and a destination for the journey. One or more modes of transport for completing at least a portion of the journey are identified. The processor generates a travel route from the start location to the destination. The generated route includes a plurality of modes of transport. At least one of the one or more identified modes of transport is selected in dependence on one or more preferences associated with the user. Also provided is a method of planning a travel route.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: April 16, 2019
    Assignee: Jaguar Land Rover Limited
    Inventors: Harpreet Singh, Lee Skrypchuk