Patents by Inventor Harpreet Singh

Harpreet Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250049886
    Abstract: A pharmaceutical composition contains an antibody or a fragment thereof specific for COL6A3 for the treatment of a cancer. A method of treating a cancer includes administering to a subject in need thereof the pharmaceutical composition. A kit includes a container that contains the pharmaceutical composition. A method of producing an antibody or a fragment thereof against a peptide or a MHC/peptide complex. A method for detecting a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a radioisotope and detecting a signal from the radioisotope in the subject. A method for treating a diseased tissue includes administering to a subject in need thereof an antibody or a fragment thereof conjugated to a toxin.
    Type: Application
    Filed: October 18, 2024
    Publication date: February 13, 2025
    Inventors: Jens FRITSCHE, Toni WEINSCHENK, Steffen WALTER, Peter LEWANDROWSKI, Harpreet SINGH
  • Publication number: 20250051857
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Application
    Filed: October 23, 2024
    Publication date: February 13, 2025
    Inventors: Andrea MAHR, Toni WEINSCHENK, Oliver SCHOOR, Jens FRITSCHE, Harpreet SINGH
  • Patent number: 12220221
    Abstract: Methods, systems, and devices for detection of medical conditions using respiration rate data are described. A method may include receiving physiological data associated with a user, the physiological data being continuously collected via a wearable device associated with the user, determining a set of respiration rate values for the user over a time interval based on the physiological data, and determining one or more respiration rate parameters associated with a change of the set of respiration rate values over the time interval. The method may further include determining one or more condition risk metrics associated with one or more medical conditions based on the one or more respiration rate parameters, where the one or more condition risk metrics associated with a relative probability that the user is associated with a respective medical condition.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: February 11, 2025
    Assignee: Oura Health Oy
    Inventors: Gerald Pho, Kirstin Elizabeth Aschbacher, Michael Chapp, Harpreet Singh Rai
  • Patent number: 12221467
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: February 11, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 12221626
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: February 11, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Oliver Schoor, Jens Fritsche, Harpreet Singh, Colette Song
  • Patent number: 12221468
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: February 11, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Anita Wiebe, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 12221493
    Abstract: The present invention relates to peptides, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated cytotoxic T cell (CTL) peptide epitopes, alone or in combination with other tumor-associated peptides that serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses. The present invention relates to 30 peptide sequences and their variants derived from HLA class I and class II molecules of human tumor cells that can be used in vaccine compositions for eliciting anti-tumor immune responses.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: February 11, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Toni Weinschenk, Oliver Schoor, Claudia Trautwein, Norbert Hilf, Steffen Walter, Harpreet Singh
  • Patent number: 12214025
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: February 4, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Toni Weinschenk, Jens Fritsche, Harpreet Singh, Andrea Mahr, Martina Ott, Claudia Wagner, Oliver Schoor
  • Publication number: 20250029050
    Abstract: In some embodiments, the present invention provides an exemplary computer system that includes at least the following components: at least one processor; a non-transitory memory storing software instructions; and where, when executing the software instructions by the processor, the computer system is configured to perform at least: controlling a plurality of first software objects; controlling a plurality of second software objects; controlling a plurality of third software object; where each software object includes at least one property programmed with at least one trigger condition and at least one programmed action; where the at least one pre-programmed action is configured to dynamically change a value of at least one property of at least one other software object based on: i) the at least one trigger condition; and ii) a value of at least one other property.
    Type: Application
    Filed: June 26, 2024
    Publication date: January 23, 2025
    Inventors: Diane Agerton Dyess, Joel Walter Denton, Andrew William Dubowec, Shawn Michael Fleming, Justin Jerry Hibbs, Troy Wayne Kirchenbauer, Peter Laundy, Russell Francis Lewis, John Walter Mallinckrodt, II, Krzysztof Musial, Harpreet Singh, Scott Michael Willey
  • Patent number: 12202878
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: January 21, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Gisela Schimmack, Michael Roemer
  • Patent number: 12195506
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: January 14, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Heiko Schuster, Annika Sonntag, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Colette Song
  • Patent number: 12195508
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: January 14, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Colette Song, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 12195507
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: January 14, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Colette Song, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 12193998
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 6, 2022
    Date of Patent: January 14, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 12193999
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: January 14, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 12195516
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: January 14, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Heiko Schuster, Daniel Johannes Kowalewski, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh, Gisela Schimmack, Michael Roemer
  • Patent number: 12193997
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: January 14, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 12195509
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: January 14, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Colette Song, Oliver Schoor, Jens Fritsche, Toni Weinschenk, Harpreet Singh
  • Patent number: 12186277
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: January 7, 2025
    Assignee: Immatics Biotechnologies GmbH
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh
  • Patent number: 12186276
    Abstract: The present invention relates to peptides, proteins, nucleic acids and cells for use in immunotherapeutic methods. In particular, the present invention relates to the immunotherapy of cancer. The present invention furthermore relates to tumor-associated T-cell peptide epitopes, alone or in combination with other tumor-associated peptides that can for example serve as active pharmaceutical ingredients of vaccine compositions that stimulate anti-tumor immune responses, or to stimulate T cells ex vivo and transfer into patients. Peptides bound to molecules of the major histocompatibility complex (MHC), or peptides as such, can also be targets of antibodies, soluble T-cell receptors, and other binding molecules.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: January 7, 2025
    Assignee: Immatics Biotechnologies Gmbh
    Inventors: Andrea Mahr, Toni Weinschenk, Colette Song, Oliver Schoor, Jens Fritsche, Harpreet Singh